

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level
Marking Scheme

Paper 1 Pg. 2
Paper 2 Pg. 42

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level - Paper 1 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect).
Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.
These scales and the marks that they generate are summarised in the following table:

Scale label	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
No. of categories	2	3	4	5
5 mark scale		$\mathbf{0 , 2 , 5}$	$\mathbf{0 , 2 , 4 , 5}$	$\mathbf{0 , 2 , 3 , 4 , 5}$
10 mark scale			$\mathbf{0 , 4 , 7 , 1 0}$	$\mathbf{0 , 4 , \mathbf { 6 } , \mathbf { 8 } , \mathbf { 1 0 }}$
15 mark scale				$\mathbf{0 , 6 , 1 0 , 1 3 , 1 5}$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving (1) incorrect rounding, (2) omission of units, $\mathbf{3}$ a misreading that does not oversimplify the work or $\mathbf{4}$ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk.
Thus, for example, scale 10C* indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only within each section (a), (b), (c), etc. of all questions.
- \quad The * penalty is not applied to currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.
Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Summary of Marks - 2017 LC Maths (Higher Level, Paper 1)

Q. 6	(a)	(i)	$5 \mathrm{C}^{*}(0,2,4,5)$
		(ii)	$10 \mathrm{D}^{*}(0,4,6,8,10)$
	(b)		$10 \mathrm{D}^{*}(0,4,6,8,10)$

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all questions.
Marks will be lost if all necessary work is not clearly shown.
Answers should include the appropriate units of measurement, where relevant.
Answers should be given in simplest form, where relevant.

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level - Paper 1
Marking Scheme (300 marks)

Answer all six questions from this section.

1(a) Simplify fully.

$$
\begin{aligned}
& \frac{x^{2}-9}{2 x^{2}-11 x+15} \div \frac{x^{2}+3 x}{4 x^{3}-10 x^{2}} \\
& \frac{x^{2}-9}{2 x^{2}-11 x+15} \div \frac{x^{2}+3 x}{4 x^{3}-10 x^{2}}=\frac{x^{2}-9}{2 x^{2}-11 x+15} \times \frac{4 x^{3}-10 x^{2}}{x^{2}+3 x} \\
&=\frac{(x-3)(x+3)}{(2 x-5)(x-3)} \times \frac{2 x^{2}(2 x-5)}{x(x+3)} \\
&=\frac{2 x^{2}}{x} \\
&=2 x
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. inverts correctly second fraction and changes division to multiplication.
	-	Some correct factorising, e.g. $x^{2}-9=(x-3)(x+3)$.
High partial credit: (4 marks)	-	Both fractions fully factorised correctly (with second fraction inverted and division changed to multiplication),
	i.e. $\frac{(x-3)(x+3)}{(2 x-5)(x-3)} \times \frac{2 x^{2}(2 x-5)}{x(x+3)}$ or equivalent, but fails to simplify to to form.	

1(b) Find the range of values of x for which

$$
\begin{equation*}
\frac{3 x-2}{x-5} \leq 5, \quad \text { where } x \in \mathbb{R} \text { and } x \neq 5 \tag{*}
\end{equation*}
$$

$$
\left.\begin{array}{rll}
& \frac{3 x-2}{x-5} & \leq 5 \\
\Rightarrow & \frac{3 x-2}{x-5} \times(x-5)^{2} & \leq 5 \times(x-5)^{2} \\
\Rightarrow & \leq & 5(x-5)^{2} \\
\Rightarrow & (3 x-2)(x-5) & \leq
\end{array}\right)
$$

Scale 10D* (0, 4, 6, 8, 10) Low partial credit: (4 marks) - Any relevant correct step, e.g. multiplies both sides by $(x-5)^{2}$.

- Finds particular values of x for which the inequality is true.
- Some correct use of quadratic formula.

Mid partial credit: (6 marks)	-	Solves the relevant quadratic equation to find the roots, $x=5 \underline{\text { and }} x=\frac{23}{2}$.
High partial credit: (8marks)	-	Wrong shape to graph, but otherwise correct.
	-	Deduces incorrectly using correct values of x.
	-	Deduces correctly for one case only, i.e. $x<5$ or $x \geq \frac{23}{2}$.
-	Solution set shown on graph only.	

* If solution is given as $x \leq 5$ and $x \geq \frac{23}{2}$, award 9 marks.

1(c) Prove that the equation $p x^{2}-(2 p+1) x+2=0$ has real roots for all values of $p \in \mathbb{R}$ and hence, or otherwise, write down the roots of the equation in terms of p.

$$
\begin{align*}
& p x^{2}-(2 p+1) x+2=0 \tag{10D}\\
& \text { Real roots: } \\
& \Rightarrow \quad b^{2}-4 a c \quad \geq 0 \\
& \text { Consider: } \\
& b^{2}-4 a c=[-(2 p+1)]^{2}-4(p)(2) \\
& =4 p^{2}+4 p+1-8 p \\
& =4 p^{2}-4 p+1 \\
& =(2 p-1)^{2} \\
& \geq \quad 0 \text { for all } p \in \mathbb{R} \\
& \Rightarrow \quad p x^{2}-(2 p+1) x+2=0 \text { has real roots for all values of } p \in \mathbb{R} \\
& \text { Roots: } \\
& =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{2 p+1 \pm \sqrt{(2 p-1)^{2}}}{2 p} \\
& =\frac{2 p+1 \pm(2 p-1)}{2 p} \\
& \Rightarrow x=\frac{2 p+1+(2 p-1)}{2 p} \\
& =\frac{4 p}{2 p} \\
& =2 \\
& =\frac{2 p+1-(2 p-1)}{2 p} \\
& =\frac{2}{2 p} \\
& =\quad \frac{1}{p}
\end{align*}
$$

Scale 10D $(\mathbf{0}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{1 0}) \quad$ Low partial credit: (4 marks) $\quad-\quad$ Any relevant first step, e.g. writes down $b^{2}-4 a c \geq 0$

- Some correct substitution into correct ' $-b$, formula and stops or continues incorrectly.

Mid partial credit: (6 marks)	-	Proves that roots are real for $p \in \mathbb{R}$ and stops.
	-	Finds both roots (not proving roots are real) and stops.
	-	Finds $b^{2}-4 a c$ and fully correct substitution in quadratic formula.
High partial credit: (8 marks)	-	Proves roots are real for $p \in \mathbb{R}$ and correct substitution in quadratic formula, but not fully simplified.

2(a) Given that $4 z-3 \bar{z}=\frac{1-18 i}{2-i}$, express z in the form $a+b i$, where $a, b \in \mathbb{R}$ and $i^{2}=-1$.

$$
\begin{array}{lcll}
& \text { Let } z & = & a+b i \\
\Rightarrow & \bar{z} & = & a-b i \\
\Rightarrow & 4(a+b i)-3(a-b i) & = & \frac{1-18 i}{2-i} \times \frac{2+i}{2+i} \\
\Rightarrow & 4 a+4 b i-3 a+3 b i & = & \frac{2+i-36 i-18 i^{2}}{5} \\
& & = & \frac{20-35 i}{5} \\
\Rightarrow & a+7 b i & & 4-7 i \\
\Rightarrow & a & & 4 \\
\text { and } & 7 b & b & = \\
\Rightarrow & z & & -7 \\
\Rightarrow & z & & 4-i
\end{array}
$$

Scale 10D $(\mathbf{0}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{1 0}) \quad$ Low partial credit: (4 marks) $\quad-\quad$ Any relevant first step, e.g. writes down $\bar{z}=a-b i$ or multiplies $\frac{1-18 i}{2-i}$ by $\frac{2+i}{2+i}$.

Medium partial credit: (6 marks)	-
	Simplifies fully $4 z-3 \bar{z}$ to $a+7 b i$ or $\frac{1-18 i}{2-i}$ or continues incorrectly. $\frac{20-35 i}{5} \underline{\text { and stops }}$
High partial credit: (8 marks)	$-\quad$Simplifies both sides fully, i.e. $a+7 b i=\frac{20-35 i}{5}$, but only one value $(a$ or $b)$ correct.

Question 2 (cont'd.)

2(b) The complex number w has modulus $3 \frac{3}{8}$ and argument $\frac{2 \pi}{3}$.
(i) Use De Moivre's Theorem to find, in polar form, the three complex cube roots of w.
(That is, find the three values of v for which $v^{3}=w$.)

$$
\begin{align*}
w & =r(\cos \theta+i \sin \theta) \tag{10D}\\
\Rightarrow & =3 \frac{3}{8}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
v^{3} & =\frac{27}{8}\left[\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right] \\
\Rightarrow \quad v & =\left(\frac{27}{8}\right)^{\frac{1}{3}}\left[\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right]^{\frac{1}{3}} \\
& =\frac{3}{2}\left[\cos \left(\frac{2 \pi}{9}+\frac{2 n \pi}{3}\right)+i \sin \left(\frac{2 \pi}{9}+\frac{2 n \pi}{3}\right)\right]
\end{align*}
$$

For $n=0$

$$
v_{1} \quad=\quad \frac{3}{2}\left[\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right]
$$

For $n=1$

$$
v_{2} \quad=\quad \frac{3}{2}\left[\cos \left(\frac{8 \pi}{9}\right)+i \sin \left(\frac{8 \pi}{9}\right)\right]
$$

For $n=2$
$v_{3}=\frac{3}{2}\left[\cos \left(\frac{14 \pi}{9}\right)+i \sin \left(\frac{14 \pi}{9}\right)\right]$
Scale 10D (0, 4, 6, 8, 10)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (4 marks) \& \& Any relevant first step, e.g. writes down \(w=r(\cos \theta+i \sin \theta)\) with \(r=3 \frac{3}{8}, \theta=\frac{2 \pi}{3}\) or \(v^{3}=3 \frac{3}{8}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)\) and stops. \\
\hline Mid partial credit: (6 marks) \& \& \begin{tabular}{l}
Correct substitution with manipulation, i.e.
\[
v=\left(\frac{27}{8}\right)^{\frac{1}{3}}\left[\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right]^{\frac{1}{3}}
\] \\
and stops or continues incorrectly.
\end{tabular} \\
\hline High partial credit: (8 marks) \& -

-
- \& | Finds correct general term for v, but fails to substitute $n=1,2,3$ into expression. i.e. $v=\frac{3}{2}\left[\cos \left(\frac{2 \pi}{9}+\frac{2 n \pi}{3}\right)+i \sin \left(\frac{2 \pi}{9}+\frac{2 n \pi}{3}\right)\right]$ |
| :--- |
| and stops. |
| Finds $v_{1}=\frac{3}{2}\left[\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right]$, but |
| fails to find or finds incorrect v_{2} and v_{2}. |

\hline
\end{tabular}

2(b) (cont'd.)
(ii) $\quad w$ is marked on the Argand diagram below.

On the same diagram, show your answers to part (i) and hence, write down the equation of the curve on which all three roots lie.
(1) Argand diagram

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Plots correctly one root from part (i).
High partial credit: (4 marks)	-	Plots correctly all three roots from part (i).
	Plots correctly one root and writes down correct equation of the curve.	

3(a) One root of the equation $4 x^{3}-8 x^{2}+k x+2=0$ is $\frac{1}{2}$.
Find the value of $k \in \mathbb{R}$ and hence the other roots of the equation.
©
Find the value of k

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =4\left(\frac{1}{2}\right)^{3}-8\left(\frac{1}{2}\right)^{2}+k\left(\frac{1}{2}\right)+2 \\
& =\frac{4}{8}-\frac{8}{4}+\frac{k}{2}+2 \\
& =\frac{1}{2}-2+\frac{k}{2}+2 \\
& =\frac{1}{2}+\frac{k}{2} \\
\Rightarrow \quad \frac{1}{2}+\frac{k}{2} & =0 \\
\Rightarrow \quad k+1 & \\
\Rightarrow \quad & =0 \\
\Rightarrow & =
\end{aligned}
$$

(2) Other roots of equation

$$
\begin{aligned}
& f(x)=4 x^{3}-8 x^{2}-x+2 \\
& x=\frac{1}{2} \text { is a root of the equation } \\
& \Rightarrow \quad(2 x-1) \text { is a factor of the equation } \\
& \text { Consider } \\
& 2 x - 1 \longdiv { 2 x ^ { 2 } - 3 x - 2 } \\
& \frac{-4 x^{3}+2 x^{2}}{-6 x^{2}-x+2} \\
& \frac{+6 x^{2}-3 x}{-4 x+2} \\
& \begin{array}{r}
+4 x-2 \\
0
\end{array} \\
& \Rightarrow \quad(2 x-1)\left(2 x^{2}-3 x-2\right) \quad=\quad 0 \\
& \Rightarrow \quad(2 x-1)(2 x+1)(x-2) \quad=\quad 0 \\
& \Rightarrow \quad 2 x+1 \quad=\quad 0 \\
& \Rightarrow \quad x \quad=-\frac{1}{2} \\
& \Rightarrow \quad x-2 \quad=\quad 0
\end{aligned}
$$

Scale 15D (0, 6, 10, 13, 15) Low partial credit: (6 marks) - Any relevant correct step, e.g. writes down

		$f\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-8\left(\frac{1}{2}\right)^{2}+k\left(\frac{1}{2}\right)+2$ and stops.
	-	Writes down $2 x-1$ is a factor of equation and attempts to divide.
Mid partial credit: (10 marks)	-	Finds correct value for k and some correct division in dividing $2 x-1$ into equation.
High partial credit: (13 marks)	-	Finds $2 x^{2}-3 x-2$ correctly using division, but fails to find or finds incorrect roots.

Question 3 (cont'd.)

3(b) (i) Express $\log _{9} x y$ in terms of $\log _{3} x$ and $\log _{3} y$.

$$
\begin{aligned}
\log _{9} x y \quad & =\log _{9} x+\log _{9} y \\
& =\frac{\log _{3} x}{\log _{3} 9}+\frac{\log _{3} y}{\log _{3} 9} \\
& =\frac{\log _{3} x}{2}+\frac{\log _{3} y}{2}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down
	$\log _{9} x y=\log _{9} x+\log _{9} y \underline{\text { or }}=\frac{\log _{3} x y}{\log _{3} 9}$	
	$\underline{\text { and stops. }}$	

3(b) (cont'd.)
(ii) Hence, or otherwise, solve the simultaneous equations for x and y :

$$
\begin{array}{ll}
\log _{9} x y & =\frac{5}{2} \\
\log _{3} x \cdot \log _{3} y & =-6
\end{array}
$$

Express your answers in their simplest form.

** Accept students' answers from part (b)(i) if not oversimplified.
Scale 5D (0, 2, 3, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. $\log _{3} x$ or $\log _{3} y$ isolated, i.e. $\log _{3} x=5-\log _{3} y$.
Mid partial credit: (3 marks)	-	Substitutes $\log _{3} x=5-\log _{3} y$ correctly into second equation and forms correct quadratic equation.
High partial credit: (4 marks)	-	Correct values for $\log _{3} x$ and $\log _{3} y$ i.e. $\log _{3} x=-1$ and $\log _{3} x=6$
		$\log _{3} y=6$ and $\log _{3} y=-1$, but fails to finish or finishes incorrectly. Finds one correct solution and finishes correctly.

4(a) A curve is defined by the equation $(x-3)^{2}+y^{2}=25$.
(i) Find $\frac{d y}{d x}$ in terms of x.
(1) Isolate y and differentiate:

$$
\begin{array}{lcll}
& (x-3)^{2}+y^{2} & = & 25 \\
\Rightarrow & y^{2} & = & 25-(x-3)^{2} \\
\Rightarrow & y & = \pm \sqrt{25-(x-3)^{2}} \\
\Rightarrow & \frac{d y}{d x} & & \pm \frac{1}{2}\left[25-(x-3)^{2}\right]^{-\frac{1}{2}}[0-2(x-3)] \\
& & & \pm \frac{3-x}{\sqrt{25-(x-3)^{2}}}
\end{array}
$$

(2) Using implicit differentiation:

$$
\overline{(x-3)^{2}+y^{2}} \quad=25
$$

$$
\Rightarrow \quad 2(x-3)(1)+2 y \frac{d y}{d x}=0
$$

$$
\Rightarrow \quad 2 y \frac{d y}{d x}=\quad-2(x-3)
$$

$$
\Rightarrow \quad \frac{d y}{d x}=\frac{-2 x+6}{2 y}
$$

$$
=\quad \frac{3-x}{y}
$$

$$
\begin{array}{lcll}
& (x-3)^{2}+y^{2} & = & 25 \\
\Rightarrow & y^{2} & = & 25-(x-3)^{2} \\
\Rightarrow & y & = & \pm \sqrt{25-(x-3)^{2}}
\end{array}
$$

$$
\Rightarrow \quad \frac{d y}{d x}= \pm \frac{3-x}{\sqrt{25-(x-3)^{2}}}
$$

Scale 5C (0, 2, 4, 5)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (2 marks) \& \& \begin{tabular}{l}
Any relevant first step, e.g. attempts to isolates \(y\) (correct transpositions) (method ©) and stops. \\
Differentiates any term correctly (method 2), e.g. \(\frac{d}{d x}(x-3)^{2}=2(x-3)(1)\) \(\frac{d}{d x}(y)^{2}=2 y \frac{d y}{d x}\).
\end{tabular} \\
\hline High partial credit: (4 marks) \& -

- \& Isolates y correctly [ans. $\left.\pm \sqrt{25-(x-3)^{2}}\right]$ and some correct differentiation $(\operatorname{method} \boldsymbol{0})$, e.g. $\pm \frac{1}{2}\left[25-(x-3)^{2}\right]^{-\frac{1}{2}}$ and stops or continues incorrectly. Differentiates all term correctly $(\operatorname{method} 2)$, i.e. $2(x-3)(1)+2 y \frac{d y}{d x}=0$ and isolates $\frac{d y}{d x}=\frac{3-x}{y}$, but fails to give answer in terms of x only.

\hline
\end{tabular}

4(a) (cont'd.)
(ii) Hence, find the equation of the tangent to the curve at the point $(6,4)$.
-
Slope of tangent @ $(6,4)$

$$
\begin{aligned}
\text { Slope, } m & =\frac{d y}{d x} \\
& = \pm \frac{3-x}{\sqrt{25-(x-3)^{2}}} \\
\Rightarrow \quad m @(6,4) & = \pm \frac{3-6}{\sqrt{25-(6-3)^{2}}} \\
& = \pm \frac{-3}{\sqrt{16}}
\end{aligned}
$$

$$
=\quad-\frac{3}{4} \quad \begin{aligned}
& \ldots \text { slope }<0 \text { for } 3<x<8 \\
& \text { in first auadrant }
\end{aligned}
$$

in first quadrant

Equation of tangent
Point (6, 4), $m=-\frac{3}{4}$

$$
\begin{array}{llll}
& y-y_{1} & = & m\left(x-x_{1}\right) \\
\Rightarrow & y-4 & = & -\frac{3}{4}(x-6) \\
\Rightarrow & 4(y-4) & = & -3(x-6) \\
\Rightarrow & 4 y-16 & & -3 x+18 \\
\Rightarrow & 3 x+4 y-34 & = & 0
\end{array}
$$

or
(2) Slope of tangent @ $(6,4)$

$$
\begin{aligned}
\text { Slope, } m & =\frac{d y}{d x} \\
& =\frac{3-x}{y} \\
\Rightarrow m @(6,4) & =\frac{3-6}{4} \\
& =-\frac{3}{4}
\end{aligned}
$$

Equation of tangent
Point (6, 4), $m=-\frac{3}{4}$

$$
\begin{array}{rlll}
& y-y_{1} & = & m\left(x-x_{1}\right) \\
\Rightarrow & y-4 & = & -\frac{3}{4}(x-6) \\
\Rightarrow & 4(y-4) & = & -3(x-6) \\
\Rightarrow & 4 y-16 & & -3 x+18 \\
\Rightarrow & 3 x+4 y-34 & & 0
\end{array}
$$

** Accept students' answers from part (a)(i) if not oversimplified.
Scale 5B (0, 2, 5)
Partial credit: (2 marks)

- Any relevant first step, e.g. writes down formula for the equation of a line with x_{1} and/or y_{1} substituted.
Finds correct slope at $(6,4)$ and stops.

4(b) (i) Show that the curve $y=\frac{2}{x-3}$, where $x \neq 3$ and $x \in \mathbb{R}$, has no turning points and no points of inflection.

$$
\begin{align*}
& \text { (1) Turning points } \tag{10D}\\
& \Rightarrow \frac{d y}{d x} \quad=0 \\
& y \quad=\frac{2}{x-3} \\
& =\quad 2(x-3)^{-1} \\
& \Rightarrow \frac{d y}{d x} \quad=\quad-2(x-3)^{-2}(1) \\
& =\frac{-2}{(x-3)^{2}} \\
& \neq 0 \quad \text {.. as }-2 \neq 0 \\
& \Rightarrow \quad y=\frac{2}{x-3} \text { has no turning points } \\
& \text { (2) Points of inflection } \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=0 \\
& \Rightarrow \frac{d y}{d x} \quad=\quad-2(x-3)^{-2}(1) \\
& \Rightarrow \frac{d^{2} y}{d x^{2}} \quad=4(x-3)^{-3}(1) \\
& =\frac{4}{(x-3)^{3}} \\
& \neq 0 \quad \text {... as } 4 \neq 0 \\
& \Rightarrow \quad y=\frac{2}{x-3} \text { has no points of inflection }
\end{align*}
$$

Scale 10D (0, 4, 6, 8, 10) Low partial credit: (4 marks) \quad - Any relevant first step, e.g. writes down $\frac{d y}{d x}=0$ at a turning point or $\frac{d^{2} y}{d x^{2}}=0$ at a point of inflection and stops.

- Finds $\frac{d y}{d x}=-2(x-3)^{-2}(1)$, but no conclusion given.

Mid partial credit: (6 marks)		Finds $\frac{d y}{d x}$ correctly and concludes not equal to zero and stops. Finds $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ correctly, but neither equated to zero (i.e. no deductions).
High partial credit: (8 marks)	-	Shows correctly that there are no turning points and finds $\frac{d^{2} y}{d x^{2}} \underline{\text { or vice versa }}$, but fails to finish. Finds both $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ correctly and equated to 0 , but does not show why this means there are no turning points or points of inflection.

4(b) (cont'd.)
(ii) Comment on the shape of the curve for all $x \in \mathbb{R}$.

$$
\begin{align*}
& \text { (1) } \frac{d y}{d x} \\
& =\frac{-2}{(x-3)^{2}} \tag{5C}\\
& <\quad 0 \text { for all } x \in \mathbb{R}, x \neq 3 \\
& \Rightarrow \quad \text { curve is decreasing for all values of } x \\
& \text { (2) Curve has two asymptotes at } x=3 \text { and } y=0 \\
& \text { ** Accept students' answers from part (b)(i) if not oversimplified. }
\end{align*}
$$

Scale 5C (0, 2, 4, 5)

| Low partial credit: (2 marks) | $-\quad$Mentions that the curve is in two sections,
 has a break, is not continuous or has an
 asymptote at $x=3$ or at $y=0$. |
| :--- | :--- | :--- |
| High partial credit: (4 marks) | $-\quad$States that the curve is decreasing for all
 values of x. |
| | $-\quad$States that the curve has two asymptotes
 at $x=3$ and $y=0$. |

(a) The power supply to a space satellite is provided by means of a generator that converts heat released by the decay of a radioisotope into electricity. The power output, in watts, may be calculated using the function

$$
w(t)=A e^{b t},
$$

where t is the time, in days, from when the satellite is launched into space. The initial power output at the launch of the satellite is 60 watts.
(i) Given that after 14 days the power output falls to 56 watts, calculate the value of b, correct to three decimal places.
(10D*)

	$w(t)$	$=$	$A e^{b t}$
	$w(0)$	=	$A e^{b(0)}$
		$=$	60
\Rightarrow	$A e^{b(0)}$	=	60
\Rightarrow	$A e^{0}$	=	60
\Rightarrow	$A(1)$	=	60
\Rightarrow	A	=	60
\Rightarrow	$w(t)$	=	$60 e^{b t}$
	$w(14)$	=	$60 e^{b(14)}$
		=	56
\Rightarrow	$60 e^{b(14)}$	=	56
\Rightarrow	$e^{14 b}$	$=$	$\frac{56}{60}$
			60
\Rightarrow	$\ln e^{14 b}$	$=$	$\ln \frac{56}{60}$
\Rightarrow	$14 b$	=	-0.068992...
\Rightarrow	b	=	-0.004928...
		\cong	-0.005

Scale 10D* $(0,4,6,8,10)$

Low partial credit: (4 marks)	-	Any relevant first step, e.g. substitutes correctly into function for $t=0, w=60$ [ans. $\left.A e^{0}=60\right]$ or $t=14, w=56$ [ans. $A e^{14 b}=56$]. Finds correct value of A [ans. 60].
Mid partial credit: (6 marks)		Finds $e^{14 b}=\frac{56}{60} \underline{\text { or }} \frac{14}{15}$ and stops.
High partial credit: (8 marks)		Finds $e^{14 b}=\frac{56}{60}$ and uses $\log _{e}$ correctly to simplify b term, but fails to find correct value of b. Finds $14 b=\ln \frac{56}{60}$, but fails to find correct value of b.

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.

5(a) (cont'd.)
(ii) The satellite cannot function properly when the power output falls below 5 watts. After how many days will the satellite fail to function properly?

$$
\begin{aligned}
& w(t) \quad=\quad 60 e^{-0.005 t} \\
& \Rightarrow \quad 60 e^{-0.005 t}=5 \\
& \Rightarrow e^{-0.005 t} \quad=\quad \frac{5}{60} \\
& \Rightarrow \quad \ln e^{-0.005 t}=\ln \frac{1}{12} \\
& \Rightarrow \quad-0.005 t \quad=\quad-\ln 12 \\
& \Rightarrow \quad t \quad=\frac{\ln 12}{0.005} \\
& =496.981329 \ldots \\
& \Rightarrow \quad \text { satellite will fail to function properly after } 497 \text { days } \\
& \text { ** Accept students' answers from part (b)(i) if not oversimplified. }
\end{aligned}
$$

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. substitutes correctly into function $w(t)=A e^{b t}$ for $w=5$ using A and b values from part (i).
High partial credit: (4 marks)		Finds $e^{-0 \cdot 005 t}=\frac{5}{60} \underline{\text { or }} \frac{1}{12}$ [accept student's values from (i)] and uses $\log _{e}$ correctly, e.g. $-0.005 t=-\ln 12$, but fails to find correct value of t.

* Deduct 1 mark off correct answer only if '496 days' given as final answer.
* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.

5(b) Find the value of the constant k for which $w(t+k)=\frac{1}{2} w(t)$, for all $t \geq 0$.
Give your answer in the form $p \ln q$, where $p, q \in \mathbb{N}$.

$$
\begin{array}{rll}
& w(t+k) & =\frac{1}{2} w(t) \\
\Rightarrow \quad 60 e^{b(t+k)} & =\frac{1}{2}\left[60 e^{b t}\right] \\
\Rightarrow \quad 60 e^{b t+b k} & & 30 e^{b t} \\
\Rightarrow \quad e^{b t} \cdot e^{b k} & & =\frac{30}{60} e^{b t} \\
& & \frac{1}{2} e^{b t} \\
\Rightarrow \quad & & \frac{1}{2} \\
\Rightarrow \quad & e^{b k} & \\
\Rightarrow \quad \ln e^{b k} & b k & \\
\Rightarrow \quad-0 \cdot 005 k & & =-\ln \frac{1}{2} \\
\Rightarrow \quad & k & \\
& & =\frac{\ln 2}{0 \cdot 005} \\
& &
\end{array}
$$

** Accept students' answers from part (a) if not oversimplified.
Scale 10D (0, 3, 5, 8, 10)

Low partial credit: (3 marks)	-	Any relevant first step, e.g. writes down $w(t+k)=60 e^{b(t+k)}$ or equivalent [accept students' values for A and b from part (i)]..
Mid partial credit: (5 marks)	-	Finds $e^{b k}=\frac{1}{2}, e^{-0 \cdot 005 k}=\frac{1}{2}$ [accept
		students' values for $b]$.

6(a) Fiona arranged to pay $€ 120$ at the end of each week for 25 years into a pension fund that earns an annual equivalent rate (AER) of $3 \cdot 9 \%$.
(i) Show that the rate of interest, compounded weekly, which corresponds to an AER of 3.9\% is 0.0736%, correct to four decimal places. [1 year $=52$ weeks]

	r	=	annual percentage rate (APR)
	i	$=$	weekly percentage rate
	F	=	$P(1+r)$
		$=$	$P(1+i)^{t}$
\Rightarrow	$1(1+r)$	=	$1(1+i)^{t}$
\Rightarrow	$1(1+0 \cdot 039)$	$=$	$1(1+i)^{52}$
\Rightarrow	1.039	=	$(1+i)^{52}$
\Rightarrow	$1+i$	$=$	$(1.039)^{\frac{1}{52}}$
\Rightarrow	i	=	1.0007360... - 1
		$=$	0.000736015...
\Rightarrow	r	$=$	0.0736015\%
		\cong	0.0736\%

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula $F=P(1+i)^{t}$ and stops.
	-	Some correct substitution into correct formula (not stated) and stops or continues.
	-	Correct substitution into incorrect formula and stops or continues.
High partial credit: (4 marks)	-	Fully correct substitution into formula, i.e. $1(1+0 \cdot 039)=1(1+i)^{52}$ or equivalent,
	$-\quad$but fails to find or finds incorrect rate. Final answer not given as a percentage,, i.e. $r=0 \cdot 000736015 \ldots$	

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.

6(a) (cont'd.)
(ii) Calculate, correct to the nearest euro, the total value of Fiona's pension fund when she retires.
(10D*)

\# payments		$\begin{aligned} & 25 \times 52 \\ & 1,300 \end{aligned}$
F		$\begin{aligned} & P(1+i)^{t} \\ & 120(1+0 \cdot 000736)^{t} \end{aligned}$
Week	Paid ($€$)	Value of payment on retirement (wk. 1,300)
1	120	120(1.000736) ${ }^{1,299}$
2	120	$120(1 \cdot 000736)^{1,298}$
3	120	$120(1 \cdot 000736)^{1,297}$
...	\ldots	...
1,298	120	$120(1 \cdot 000736)^{2}$
1,299	120	$120(1 \cdot 000736)^{1}$
1,300	120	120

$\Rightarrow \quad$ Geometric series with $n=1,300, a=120$ and $r=1.000736$

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
\Rightarrow \quad S_{1,300} & =\frac{120\left(1-1 \cdot 000736^{1,300}\right)}{1-1 \cdot 000736} \\
& =\frac{261,266 \cdot 798874 \ldots}{} \\
& \cong 261,267
\end{aligned}
$$

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. reference to $25 \times 52=1,300$ payments or value of first or subsequent payments at retirement $=120(1 \cdot 000736)^{n}$, where $1<n \leq 1,300$.
	-	Recognises value of retirement fund as a sum of a GP with some correct substitution into S_{n} formula.
Mid partial credit: (6 marks)	Fully correct substitution into S_{n} formula, but fails to find or finds incorrect value of fund on retirement.	
High partial credit: (8 marks)		

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded
- apply only once to each section (a), (b), (c), etc. of question.

6(b) On retirement, Fiona invests the total value of her pension fund in a scheme that earns an AER of 4.2%. Fiona will receive a fixed amount of money at the end of each month for twenty years, at which time the value of her investment will be zero. Calculate, correct to the nearest euro, the amount of each monthly payment

Interest rate

	r	$=$	annual percentage rate (APR)
	i	$=$	monthly percentage rate
	F	$=$	$P(1+r)$
		=	$P(1+i)^{t}$
\Rightarrow	$1(1+r)$	=	$1(1+i)^{t}$
\Rightarrow	$1(1+0 \cdot 042)$	=	$1(1+i)^{12}$
\Rightarrow	$1 \cdot 042$	=	$(1+i)^{12}$
			(042) $\frac{1}{12}$
\Rightarrow	$1+i$	$=$	$(1 \cdot 042)^{\frac{1}{12}}$
			${ }^{\frac{1}{12}}$
\Rightarrow	i	$=$	$1 \cdot 042^{12}-1$
		$=$	1.003434... - 1
		=	0.003434...
\Rightarrow	r	$=$	0.3434\%

(1) Sum of geometric series

Let $X=$ fixed monthly payment for 20 years

$$
\begin{aligned}
\text { \#payments } & =12 \times 20 \\
& =240 \\
F & =P(1+i)^{t} \\
\Rightarrow \quad P & =\frac{F}{(1+i)^{t}} \\
& =\frac{X}{(1+0 \cdot 003434)^{t}} \\
& =\frac{X}{1 \cdot 003434^{t}}
\end{aligned}
$$

Month	Present value of future payment (P)	Future payment (F)
1	$\frac{X}{1 \cdot 003434^{1}}$	X
2	$\frac{X}{1.003434^{2}}$	X
\ldots	\ldots	\ldots
240	$\frac{X}{1.003434^{240}}$	X

$\Rightarrow \quad$ Geometric series with $n=240, a=\frac{X}{1 \cdot 003434}$ and $r=\frac{1}{1 \cdot 003434}$

$$
\begin{aligned}
& S_{n} \quad=\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{\frac{X}{1 \cdot 003434}\left(1-\frac{1}{1 \cdot 003434^{240}}\right)}{1-\frac{1}{1 \cdot 003434}} \\
& =\frac{X(0.558897 \ldots)}{0.003422 \ldots} \\
& =163 \cdot 294980 \ldots X \\
& \Rightarrow \quad 163 \cdot 294980 \ldots X \quad=\quad 261,267 \\
& \Rightarrow \quad X \quad=\quad 1,599.969571 \ldots \\
& \cong € 1,600
\end{aligned}
$$

Question 6 (cont'd.)

6(b) (cont'd.)
(2) Amortisation

$$
\begin{aligned}
& =P \frac{i(1+i)^{t}}{(1+i)^{t}-1} \\
& =\quad 12 \times 20 \\
& =240 \\
& i=0.003434 \\
& P \quad=\quad 261,267 \\
& X \quad=\quad \text { fixed monthly payment } \\
& \Rightarrow \quad A \\
& =\frac{261,267(0 \cdot 003434)(1+0 \cdot 003434)^{240}}{(1.003434)^{240}-1} \\
& =\frac{261,267(0.003434)(1 \cdot 003434)^{240}}{(1.003434)^{240}-1} \\
& =1599 \cdot 906538 \ldots \\
& \cong \quad € 1,600
\end{aligned}
$$

** Accept students' answers from part (a)(ii) if not oversimplified.
Scale 10D* $(0,4,6,8,10)$

Low partial credit: (4 marks)	-	Any relevant first step, e.g. calculates correct monthly rate [ans. $0 \cdot 003434379 \ldots$, (rounded or not)] or number of payments [ans. $20 \times 12=240]$.		
Mid partial credit: (6 marks)	-	Recognises sum of future payments as a sum of a GP with some correct		
	-	substitution in S_{n} formula. Writes down correct relevant formula for amortisation with some correct substitution into formula.		
		Fully correct substitution into S_{n} or amortisation formula, but fails to finish or finishes incorrectly.		
High partial credit: (8 marks)				

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.
exams

Answer all three questions from this section.

The diagram below shows the beginning of Pascal's triangle.

The rows of Pascal's triangle are conventionally enumerated, starting with row $r=0$ at the top (row 0). The entries in each row are numbered from left to right, beginning with $k=0$ (e.g. in row $3, k_{0}=1$, $k_{1}=3, k_{2}=3$ and $k_{4}=1$).
The triangle may be constructed as follows: In row 0 (the topmost row), the entry is 1 . Each entry in successive rows is found by adding the number above and to the left with the number above and to the right, treating blank entries as 0 .
There are several patterns found within Pascal's triangle. Consider the two sequences, A and B, shown below.

7(a) Find an expression for T_{n}, the nth term, and S_{n}, the sum of the first n terms, of sequence A.

> (1) T_{n}, the nth term
> Sequence A :
> $1,2,3,4,5, \ldots$
> $\Rightarrow \quad$ arithmetic series
> $T_{n} \quad=a+(n-1) d$
> $a \quad=\quad 1$
> $d \quad=1$
> $\Rightarrow \quad T_{n} \quad=\quad 1+(n-1) 1$
> $=1+n-1$
> $=n$
(1) $\quad S_{n}$, the sum of the first n terms

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[2(1)+(n-1)(1)] \\
& =\frac{n}{2}[2+n-1] \\
& =\frac{n}{2}[n+1]
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down sequence A is linear (arithmetic) pattern with $a=1$ and $d=1$.
	$-\quad$Finds $T_{n}=n$ (by inspection or calculation) and stops.	
High partial credit: (4 marks)	-Finds correct T_{n} and writes down formula for S_{n} with a and d correctly identified, but not fully substituted/simplified.	

7(b) Find an expression for T_{n}, the nth term of sequence B.
©
Sequence $B: \quad=\quad 1,3,6,10, \ldots$

Term	1st Diff.	2nd Diff.
1	$\underline{\mathbf{2}}$	
3	$\underline{\mathbf{3}}$	$\underline{\mathbf{1}}$
6	$\underline{\mathbf{4}}$	$\underline{\mathbf{1}}$
10		

$$
\Rightarrow \quad \text { first differences are not constant, but the second differences are constant }
$$ \Rightarrow terms form a quadratic sequence

$\begin{array}{rll}T_{n} & & =a n^{2}+b n+c \\ 2 a & & =1 \\ a & & =\frac{1}{2}\end{array}$
$\Rightarrow \quad T_{n} \quad=\quad \frac{1}{2} n^{2}+b n+c$
$\quad T_{1}=1$
$\Rightarrow \quad$
$\frac{1}{2}(1)^{2}+b(1)+c \quad=\quad 1$
$\Rightarrow \quad \frac{1}{2}+b+c \quad=1$
$\Rightarrow \quad b+c \quad=\quad \frac{1}{2}$

$$
\begin{array}{rll}
& T_{2}=3 \tag{1}\\
\Rightarrow \quad & \frac{1}{2}(2)^{2}+b(2)+c \quad= & 3 \\
\Rightarrow \quad & 2+2 b+c & =3
\end{array}
$$

$$
\begin{array}{lrl}
\Rightarrow & \angle+\angle D+c & = \\
2 b+c & = & 1
\end{array}
$$

$$
\Rightarrow \quad-b-c \quad=\quad-\frac{1}{2} \quad \text { (1) }(\times-1)
$$

$$
\begin{array}{lll}
2 b+c & = & 1 \\
1
\end{array}
$$

$$
\Rightarrow \quad b \quad=\quad \frac{1}{2}
$$

$$
\text { and } \quad c \quad=\quad 0
$$

$$
\Rightarrow \quad T_{n} \quad=\quad \frac{1}{2} n^{2}+\frac{1}{2} n
$$

$$
=\quad \frac{n}{2}(n+1)
$$

or

$$
\begin{aligned}
\text { Sequence } B: & \\
& =\binom{2}{2},\binom{3}{2},\binom{4}{2},\binom{5}{2}, \ldots \\
\Rightarrow \quad T_{n} & =\binom{n+1}{2} \\
& =\frac{(n+1) n}{2}
\end{aligned}
$$

Scale 10D $(\mathbf{0}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{1 0}) \quad$ Low partial credit: (4 marks) $\quad-\quad$ Any relevant first step, e.g. writes down sequence B is quadratic pattern as second difference is constant.

- Finds $T_{n}=\frac{1}{2} n^{2}+b n+c$ and stops.

Mid partial credit: (6 marks)	-	Writes down $T_{n}=\frac{1}{2} n^{2}+b n+c$ and finds		
		correct value of a and stops.	,	Forms two correct equations in b and c,
:---				
but fails to finish or finish incorrectly.	,			

7(c) (i) Verify that the third entry of row 6 of Pascal's triangle is found by adding T_{5} of sequence A and T_{4} of sequence B.

$$
\begin{aligned}
& \text { Row 6: } \\
& \text { Sequence } A \text { : } \\
& \Rightarrow \begin{array}{llll}
& T_{n}(A) & = & n \\
& T_{5}(A) & & 5
\end{array} \\
& \text { Sequence } B \text { : } \\
& T_{n}(B) \quad=\quad \frac{n}{2}(n+1) \\
& \Rightarrow \quad T_{4}(B) \quad=\quad \frac{4(5)}{2} \\
& =10 \\
& \Rightarrow \quad T_{5}(A)+T_{4}(B) \quad=\quad 5+10 \\
& \Rightarrow \quad 3 \text { rd entry of row } 6=T_{5}(A)+T_{4}(B)
\end{aligned}
$$

$1,6,15,20,15,6,1$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down at least first three terms of row 6 from
	-	Pascal's triangle and stops. Finds correct values of $T_{5}(A)$ and/or $T_{4}(B)$ and stops.
High partial credit: (4 marks)	-	Finds correct values of $T_{5}(A)$ and $T_{4}(B)$ and third entry of row 6, but no conclusion given.

(ii) Find an expression, in r, for the third entry of the r th row and hence, verify your answer to part (i) above.
(1) $\begin{aligned} \begin{array}{l}\text { Expression, in } r \text {, for third entry of row } r \\ \text { Row } r \text { : } \\ \text { Third entry } \\ T_{r-1}(A) \\ T_{r-2}(B)\end{array} & = \\ & =\frac{T_{r-1}(A)+T_{r-2}(B)}{2} \\ & =\frac{(r-1}{2}(r-2)(r-2+1) \\ \Rightarrow \quad \text { Third entry } & =\frac{r-1+\frac{(r-2)(r-1)}{2}}{2} \\ & =\frac{2(r-1)+(r-2)(r-1)}{2} \\ & =\frac{2 r-2+r^{2}-3 r+2}{2} \\ & =\frac{r^{2}-r}{2} \\ & =\frac{r(r-1)}{2}\end{aligned}$
(2) Verify answer to part (i)

For $r=6$

$$
\begin{aligned}
\text { Third entry } & =\frac{6(6-1)}{2} \\
& =\frac{30}{2} \\
& =15
\end{aligned}
$$

Question 7 (cont'd.)

7(c) (ii) (cont'd.)

Scale 5C (0, 2, 4, 5)
** Accept students' answers from part (c)(i) if not oversimplified.

Low partial credit: (2 marks)	$-\quad$Any relevant first step, e.g. writes down 'Third entry $=T_{r-1}(A)+T_{r-2}(B)$ ' and stops.	
	$\underline{\text { Finds } T_{r-1}}$and stops. High partial credit: $\left(4\right.$ marks $T_{r-2}(B)$ correctly	$-\quad$Finds $T_{r-1}(A)$ and $T_{r-2}(B)$ correctly and finds third entry in terms of r, but fails to verify answer to part (i).

(iii) An entry in Pascal's triangle is denoted $\binom{r}{k}$ and can be determined using the formula:

$$
\binom{r}{k}=\binom{r-1}{k-1}+\binom{r-1}{k}
$$

where r is the row number (top row $=0$) and k is the entry number in row r (first entry $=0$).
Using the above formula, verify your expression, in r, for the third entry in the r th row.

$$
\begin{aligned}
\text { Third entry in row } r & =\binom{r}{2} \\
& =\binom{r-1}{1}+\binom{r-1}{2} \\
& =\frac{(r-1)!}{1!(r-1-1)!}+\frac{(r-1)!}{2!(r-1-2)!} \\
& =\frac{(r-1)!}{(r-2)!}+\frac{(r-1)!}{2!(r-3)!} \\
& =\frac{r-1+\frac{(r-2)(r-1)}{(2)(1)}}{} \\
& =\frac{2(r-1)+(r-2)(r-1)}{2} \\
& =\frac{2 r-2+r^{2}-3 r+2}{2} \\
& =\frac{r^{2}-r}{2} \\
& =\frac{r(r-1)}{2}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. substitutes 2
		for k, i.e. $\binom{r}{2}=\binom{r-1}{1}+\binom{r-1}{2} \underline{\text { and stops. }}$.
	-	Finds $\binom{r-1}{1} \underline{\text { and/or }}\binom{r-1}{2}$ correctly
	$\underline{\text { and stops. }}$	

7(d) Prove by induction that S_{n}, the sum of the first n terms of sequence B, is $\frac{n(n+1)(n+2)}{6}$ for all $n \in \mathbb{N}$.
(1) $\quad \mathrm{P}(n)$:
$1+3+6+10+\ldots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}$
(2) $\mathrm{P}(1)$:

Test hypothesis for $n=1$
$\frac{1(1+1)}{2}$
$=\frac{1(1+1)(1+2)}{6}$
$\frac{1(2)}{2}$
$=\frac{1(2)(3)}{6}$
1
$=\frac{6}{6}$
$=1$
$\Rightarrow \quad$ True for $n=1$
$3 \quad \mathrm{P}(k)$:
Assume hypothesis for $n=k$ is true

$$
\Rightarrow \quad 1+3+6+10+\ldots+\frac{k(k+1)}{2} \quad=\quad \frac{k(k+1)(k+2)}{6}
$$

(4) $\mathrm{P}(k+1)$:

Test hypothesis for $n=k+1$
To Prove:

$$
\begin{aligned}
1+3+6+10+\ldots+\frac{k(k+1)}{2}+ & \frac{(k+1)(k+2)}{2} \\
& =\quad \frac{(k+1)(k+2)(k+3)}{6}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& 1+3+6+10+\ldots+\frac{k(k+1)}{2}+\frac{(k+1)(k+2)}{2} \\
&=\frac{k(k+1)(k+2)}{6}+\frac{(k+1)(k+2)}{2} \\
&=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{6} \\
&=\frac{(k+1)(k+2)(k+3)}{6}
\end{aligned}
$$

$$
\Rightarrow \quad \text { True for } n=k+1
$$

So, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Since $\mathrm{P}(1)$ is true, then by induction $\mathrm{P}(n)$ is true for any positive integer $n(n \in \mathbb{N})$.
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correctly $\mathrm{P}(1)$ step and stops.
Mid partial credit: (6 marks)	-	Writes down correctly $\mathrm{P}(1)$ and $\mathrm{P}(k)$ or $\mathrm{P}(k+1)$ steps.
High partial credit: (8 marks)	-	Writes down correctly $\mathrm{P}(1)$ step and $\mathrm{P}(k)$ and uses $\mathrm{P}(k)$ to prove $\mathrm{P}(k+1)$ step, but fails to finish or finish incorrectly. Writes down all steps correctly, but no conclusion given.

7(e) The coefficients of a binomial expansion can be found using Pascal's triangle.
(i) Using Pascal's triangle, or otherwise, expand $(a+b)^{4}+(a-b)^{4}$ and simplify.

Row 4:
$1,4,6,4,1$

$$
\begin{array}{ll}
\Rightarrow \quad(a+b)^{4} & =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
\Rightarrow \quad(a-b)^{4} & =a^{4}-4 a^{3} b+6 a^{2} b^{3}-4 a b^{3}+b^{4} \\
\Rightarrow \quad(a+b)^{4}+(a-b)^{4} & =2 a^{4}+12 a^{2} b^{2}+2 b^{4} \\
& = \\
& 2\left(a^{4}+6 a^{2} b^{2}+b^{4}\right)
\end{array}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. expands $(a+b)^{4}$ or $(a-b)^{4}$ correctly and stops.
High partial credit: (4 marks)	-	Expands both $(a+b)^{4}$ and $(a-b)^{4}$ correctly, but fails to find their sum or not fully simplified.

(ii) Hence, express $\left(x+\sqrt{x^{2}+1}\right)^{4}+\left(x-\sqrt{x^{2}+1}\right)^{4}$ as a polynomial in terms of x.

$$
\begin{array}{rll}
(a+b)^{4}+(a-b)^{4} & = & 2\left(a^{4}+6 a^{2} b^{2}+b^{4}\right) \tag{5C}\\
\text { Let } a=x \text { and } b=\sqrt{x^{2}+1} & & \\
\Rightarrow \quad\left(x+\sqrt{x^{2}+1}\right)^{4}+\left(x-\sqrt{x^{2}+1}\right)^{4} & \\
& = & 2\left[x^{4}+6(x)^{2}\left(\sqrt{x^{2}+1}\right)^{2}+\left(\sqrt{x^{2}+1}\right)^{4}\right] \\
& = & 2\left[x^{4}+6 x^{2}\left(x^{2}+1\right)+\left(x^{2}+1\right)^{2}\right] \\
& = & 2\left[x^{4}+6 x^{4}+6 x^{2}+x^{4}+2 x^{2}+1\right] \\
& = & 2\left[8 x^{4}+8 x^{2}+1\right] \\
& = & 16 x^{4}+16 x^{2}+2
\end{array}
$$

** Accept students' answers from part (ii) if not oversimplified.
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. substitutes correctly x for a and $\sqrt{x^{2}+1}$ for b into $2\left(a^{4}+6 a^{2} b^{2}+b^{4}\right)$ and stops.
High partial credit: (4 marks)	-	Finds $2\left[x^{4}+6 x^{2}\left(x^{2}+1\right)+\left(x^{2}+1\right)^{2}\right]$ or $2 x^{4}+12 x^{2}\left(x^{2}+1\right)+2\left(x^{2}+1\right)^{2}$ correctly,,

8(a) A grain silo is a tank used for the bulk storage of grain after it is harvested. A particular grain silo is in the shape of an inverted right cone, as shown. The vertical height of the cone is 5 m and the diameter of the base of the cone is 4 m .

Grain is pumped into an empty silo at a uniform rate of $4 \mathrm{~m}^{3}$ per minute. Let h be the depth of the grain and r be the radius of the grain in the silo after t minutes.
(i) Using similar triangle, or otherwise, show that $r=\frac{2 h}{5}$.

$$
\begin{aligned}
& \text { Diameter of cone }=4 \mathrm{~m} \\
& \Rightarrow \text { radius of cone } \quad=\quad 2 \mathrm{~m} \\
& \text { From the diagram: } \\
& \frac{r}{2} \quad=\frac{h}{5} \\
& \Rightarrow \quad r \quad=\frac{2 h}{5}
\end{aligned}
$$

(5B)

... equiangular/similar triangles as both have common angle $\alpha, 90^{\circ}$ angles and hence the third angles in both triangles are equal

Scale 5B (0, 2, 5)

Partial credit: (2 marks) $\quad-\quad$ Any relevant first step, e.g. writes down $\tan \alpha=\frac{r}{h} \underline{\text { or }} \frac{2}{5}$ and stops.

- Explains why triangles are similar.
(ii) Find, in terms of π and h, the volume of grain in the silo after t minutes.

After t minutes:

$$
\begin{aligned}
V_{\text {grain }}(t) & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(\frac{2 h}{5}\right)^{2} h \\
& =\frac{1}{3} \pi\left(\frac{4 h^{2}}{25}\right) h \\
& =\frac{4 \pi h^{3}}{75} \mathrm{~m}^{3}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for the volume of a cone with some substitution for r and stops [accept $r=2]$.
High partial credit: (4 marks)	$-\quad$Substitutes fully into volume formula i.e. $V_{\text {grain }}(t)=\frac{1}{3} \pi\left(\frac{2 h}{5}\right)^{2} h$, but fails to finish \quador finish incorrectly.	

8(b) (i) Find, in terms of π, the rate at which the depth of grain is increasing when the depth of grain in the silo is 3 m .

$$
\begin{aligned}
\frac{d V}{d t} & & 4 \mathrm{~m}^{3} / \mathrm{min} \\
V & & \frac{4 \pi h^{3}}{75} \\
\Rightarrow \quad \frac{d V}{d h} & & \frac{12 \pi h^{2}}{75} \\
\frac{d V}{d t} & & \frac{d V}{d h} \times \frac{d h}{d t} \\
\Rightarrow \quad 4 & & \frac{12 \pi h^{2}}{75} \times \frac{d h}{d t} \\
\Rightarrow \quad \frac{d h}{d t} & & 4 \times \frac{75}{12 \pi h^{2}} \\
& & =\frac{300}{12 \pi h^{2}} \\
& & =\frac{25}{\pi h^{2}}
\end{aligned}
$$

@ $h=3$
$\Rightarrow \quad \frac{d h}{d t} \quad=\frac{25}{\pi(3)^{2}}$
$=\quad \frac{25}{9 \pi} \mathrm{~m} / \mathrm{min}$
** Accept students' answers from part (a)(ii) if not oversimplified.
Scale 15D* $(\mathbf{0}, \mathbf{6}, \mathbf{1 0}, \mathbf{1 3}, \mathbf{1 5)}$ Low partial credit: (6 marks) $\quad-\quad$ Any relevant first step, e.g. writes down $\frac{d V}{d t}=4 \underline{\text { or }} \frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t} \underline{\text { and stops }}$.

- Some correct relevant differentiation e.g. $\frac{d V}{d h}=\frac{12 \pi h^{2}}{75}$.
- Mentions a relevant rate of change i.e. $\frac{d V}{d t} \underline{\text { and/or }} \frac{d V}{d h} \underline{\mathrm{and} / \mathrm{or}} \frac{d h}{d t}$.

Mid partial credit: (10 marks) $\quad-\quad$ Finds $4=\frac{12 \pi h^{2}}{75} \times \frac{d h}{d t}$ correctly, but fails to manipulate or manipulates incorrectly.

High partial credit: (13 marks) $\quad-\quad$ Finds $\frac{d h}{d t}=\frac{75}{3 \pi h^{2}}$, but fails to evaluate or evaluates incorrectly the rate of change when the depth of grain is 3 m .

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m/min') - apply only once in each section (a), (b), (c), etc. of question.

8(b) (cont'd.)
(ii) Find the rate at which the free surface of the grain is increasing when the radius is 1.5 m .
(10D*)

$$
\begin{aligned}
& \text { Surface of the grain is a circle of radius } r \\
& S_{\text {grain }} \quad=\pi r^{2} \\
& =\pi\left(\frac{2 h}{5}\right)^{2} \\
& =\frac{4 h^{2} \pi}{25} \\
& \Rightarrow \frac{d S}{d h} \quad=\frac{8 h \pi}{25} \\
& \frac{d h}{d t} \quad=\frac{25}{\pi h^{2}} \\
& \frac{d S}{d t} \quad=\quad \frac{d S}{d h} \times \frac{d h}{d t} \\
& =\frac{8 h \pi}{25} \times \frac{25}{\pi h^{2}} \\
& =\frac{8}{h} \\
& =\frac{2 h}{5} \quad \ldots \text { given in part (a) } \\
& \Rightarrow \quad h \quad=\frac{5 r}{2} \\
& \text { (a) } r=1 \cdot 5 \\
& h=\frac{5(1 \cdot 5)}{2} \\
& =3.75 \\
& \Rightarrow \frac{d S}{d t} \quad=\frac{8}{3.75} \\
& =\frac{32}{15} \mathrm{~m}^{2} / \mathrm{min} \text { or } 2 \cdot 1 \dot{3} \mathrm{~m}^{2} / \mathrm{min}
\end{aligned}
$$

** Accept students' answers from part (b)(i) if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)		Any relevant first step, e.g. substitutes $\frac{2 h}{5}$ into area formula to find $S_{\text {grain }}=\frac{4 h^{2} \pi}{25}$ or writes down $\frac{d S}{d t}=\frac{d S}{d h} \times \frac{d h}{d t}$ and stops. Mentions a relevant rate of change i.e. $\frac{d S}{d t} \underline{\mathrm{and} / \mathrm{or}} \frac{d S}{d h} \underline{\mathrm{and} / \mathrm{or}} \frac{d h}{d t}$.
Mid partial credit: (6 marks)	-	Correct relevant differentiation e.g. $\frac{d V}{d h}=\frac{12 \pi h^{2}}{75} \underline{\text { and stops }}$ or continues incorrectly.
High partial credit: (8 marks)		Finds $\frac{d S}{d t}=\frac{8 h \pi}{25} \times \frac{25}{\pi h^{2}}$ or $\frac{8}{h}$, but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m/min') - apply only once in each section (a), (b), (c), etc. of question.

8(c) The company which manufactures these grain silos wishes to minimise the amount of sheet metal required to produce each one while retaining the same capacity (volume) of the tank.
(i) Express the curved surface area of the silo in term of π and h.

$$
\begin{aligned}
V_{\text {silo }} & =\frac{1}{3} \pi(2)^{2}(5) \\
& =\frac{20 \pi}{3} \mathrm{~m}^{3} \\
\Rightarrow \quad V_{\text {optimum silo }} & =\frac{1}{3} \pi R^{2} H \\
& =\frac{20 \pi}{3} \\
\Rightarrow \quad \frac{1}{3} \pi R^{2} H & =\frac{20 \pi}{3} \\
\Rightarrow \quad R^{2} H & \\
\Rightarrow \quad R^{2} H & =\frac{20}{H} \\
\Rightarrow \quad R^{2} & =\pi R L \\
& =\pi R \sqrt{R^{2}+H^{2}} \\
& =\pi \sqrt{\frac{20}{H}} \sqrt{\frac{20}{H}+H^{2}} \\
& \\
& =\pi \sqrt{\frac{400}{H^{2}}+\frac{20 H^{2}}{H}} \\
& \\
& =\pi\left(400 H^{-2}+20 H\right)^{\frac{1}{2}}
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)		Any relevant first step, e.g. calculates correct volume of cone [ans. $\frac{20 \pi}{3}$]. Equates volume of cone to optimum cone, but fails to find $R^{2}=\frac{20}{H} \underline{\text { or }} R^{2} H=20$.
Mid partial credit: (6 marks)	-	Equates volume of cone to optimum cone and find $R^{2}=\frac{20}{H}$ or $R^{2} H=20$ and stops or continues incorrectly.
High partial credit: (8 marks)		Finds $\operatorname{CSA}=\pi \sqrt{\frac{20}{H}} \sqrt{\frac{20}{H}+H^{2}}$, but fails to finish or finishes incorrectly.

8(c) (cont'd.)
(ii) Hence, find the value of the radius that minimises the curved surface area of the grain silo, correct to two decimal places.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{CSA} & =\pi\left(400 H^{-2}+20 H\right)^{\frac{1}{2}} \\
\Rightarrow \quad \frac{d}{d h}(\mathrm{CSA}) & =\frac{1}{2} \pi\left(400 H^{-2}+20 H\right)^{-\frac{1}{2}} \cdot\left[(-2) 400 H^{-3}+20\right]
\end{aligned} \\
& \Rightarrow \frac{-400 H^{-3}+10}{\sqrt{400 H^{-2}+20 H}}=0 \quad \text {... for minimum surface } \\
& \Rightarrow-400 H^{-3}+10 \quad=\quad 0 \\
& \Rightarrow \frac{400}{H^{3}} \quad=10 \\
& \Rightarrow \quad H^{3} \quad=\frac{400}{10} \\
& \begin{array}{rll}
& = & 40 \\
& = & \sqrt[3]{40}
\end{array} \\
& \Rightarrow \quad R^{2} \quad=\frac{20}{\sqrt[3]{40}} \\
& =5 \cdot 848035 \ldots \\
& \Rightarrow \quad R \quad=\quad 2 \cdot 418271 \ldots \\
& \cong \quad 2.42 \mathrm{~m} \\
& \text { ** Accept students' answers from part (c)(i) if not oversimplified. }
\end{aligned}
$$

Scale 5D* (0, 2, 3, 4, 5) Low partial credit: (2 marks) - Any relevant first step, e.g. writes down ' $\frac{d}{d h}(\mathrm{CSA})=0$ for minimum surface' or equivalent and stops.

	$\underline{\text { or equivalent and stops. }}$
Mid partial credit: (3 marks)	Differentiates correctly to find $\frac{d}{d h}(\mathrm{CSA})$ and stops or continues incorrectly.
High partial credit: (4 marks)	Solves correctly for $H=\sqrt[3]{40}$, but fails to find or finds incorrect value for r.

* Deduct 1 mark off correct answer only $\mathbf{(1}$ if final answer(s) are not rounded or incorrectly rounded or $\boldsymbol{2}$ for the omission of or incorrect use of units (' m ') - apply only once to each section (a), (b), (c), etc. of question.
(a) The acceleration of a particle, in $\mathrm{m} \mathrm{s}^{-2}$, moving in a straight line during a particular time interval, is given by:

$$
a=\frac{1}{t^{2}}+3 t, \quad \text { for } 1 \leq t \leq 5
$$

where t is the time, in seconds, from the instant the particle begins to move.
(i) Given that the speed of the particle is $\frac{1}{2}$ after 1 s , find its speed after 5 s .

$$
\begin{array}{rlrl}
a & & =\frac{1}{t^{2}}+3 t \\
\Rightarrow \quad \frac{d v}{d t} & =t^{-2}+3 t \\
\Rightarrow \quad \int_{-2}\left(\frac{d v}{d t}\right) d t & & =t^{-2}+3 t \\
\left.\Rightarrow \quad \int^{-2}+3 t\right) d t \\
d v & & =\int_{t}\left(t^{-2}+3 t\right) d t \\
v & & =\frac{t^{-1}}{-1}+\frac{3 t^{2}}{2}+c \\
& =\frac{3 t^{2}}{2}-\frac{1}{t}+c
\end{array}
$$

when $t=1, v=\frac{1}{2}$
$\Rightarrow \quad \frac{1}{2} \quad=\quad \frac{3}{2}(1)^{2}-\frac{1}{1}+c$

$$
\Rightarrow \quad \frac{1}{2} \quad=\frac{3}{2}-1+c
$$

$$
\Rightarrow \quad c \quad=\quad \frac{1}{2}-\frac{3}{2}+1
$$

$$
=0
$$

when $t=5$

$$
\begin{aligned}
v(t) & =\frac{3 t^{2}}{2}-\frac{1}{t} \\
\Rightarrow \quad v(5) & =\frac{3}{2}(5)^{2}-\frac{1}{5} \\
& =\frac{75}{2}-\frac{1}{5} \\
& =37 \cdot 5-0 \cdot 2 \\
& =37 \cdot 3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. replaces a with $\frac{d v}{d t} \underline{\text { and stops. }}$ Some correct integration and stops or continues incorrectly.
Mid partial credit: (6 marks)		Finds $v=\frac{t^{-1}}{-1}+\frac{3 t^{2}}{2}+c$ or $\frac{3 t^{2}}{2}-\frac{1}{t}+c$ and stops or continues incorrectly.
High partial credit: (8 marks)	-	Finds correct expression for v, i.e. $v(t)=\frac{3 t^{2}}{2}-\frac{1}{t}$, but fails to evaluate or evaluates incorrectly for $t=5$.

[^0]9(a) (cont'd.)
(ii) Find the average speed of the particle over the interval $1 \leq t \leq 5$. Give your answer correct to two decimal places.

Average value of $f(x)$ in the interval $[a, b]$

$$
\begin{align*}
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
v(t) & =\frac{3 t^{2}}{2}-\frac{1}{t} \quad \ldots \text { from pa } \tag{a}\\
\Rightarrow \quad \text { Average speed } & =\frac{1}{5-1} \int_{1}^{5}\left(\frac{3 t^{2}}{2}-\frac{1}{t}\right) d x \\
& =\left.\frac{1}{4}\left[\frac{3 t^{3}}{6}-\ln |t|\right]\right|_{1} ^{5} \\
& =\frac{1}{4}\left[\frac{3}{6}(5)^{3}-\ln |5|\right]-\frac{1}{4}\left[\frac{3}{6}(1)^{3}-\ln |1|\right] \\
& =\frac{1}{4}\left[\frac{375}{6}-\ln |5|\right]-\frac{1}{4}\left[\frac{3}{6}-0\right] \\
& =\frac{1}{4}\left[\frac{372}{6}-\ln |5|\right] \\
& =\frac{1}{4}[62-\ln |5|] \\
& =\frac{1}{4}[62-\ln |5|] \\
& = \\
& \cong 15 \cdot 097640 \ldots \\
& 15 \cdot 10 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

** Accept students’ answers from part (a)(ii) if not oversimplified.
Scale 10D* $(0,4,6,8,10)$

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down relevant formula for the average value of a function. Integrates one term correctly.
	-	Integrates both terms correctly, but excludes $\frac{1}{b-a}$ Mid partial credit: $(6$ marks $)$
High partial credit: (8 marks)	-	Integrates correctly, i.e. average speed
	$=\frac{1}{4}\left[\frac{3 t^{3}}{6}-\ln \|t\|\right] \underline{\text { or }\left.\frac{1}{4}\left[\frac{3 t^{3}}{6}-\ln \|t\|\right]\right\|_{1} ^{5},}$	
	but fails to evaluate or evaluates incorrectly or evaluates using incorrect limits.	

[^1]9(b) The proposed level of new roadways is achieved primarily through series of 'cuts' and 'fills', taking earth material from one area and using it somewhere else.

The diagram shows the vertical cross-section of a roadway through a particular terrain. The proposed elevation of the roadway is 14 m above sea-level and therefore a cut is
 required between points A and B.

Using the co-ordinate plane with the y-axis as the initial point of the cut and the x-axis as sea-level, the elevation of the terrain can be described by the function

$$
f(x)=32-2(x-3)^{2},
$$

where both x and $f(x)$ are measured in metres.
(i) Find the co-ordinates of A and B.

	$f(x)$	$=$	$32-2(x-3)^{2}$				
		$=$	14				
\Rightarrow	$32-2(x-3)^{2}$	$=$	14				
\Rightarrow	$2(x-3)^{2}$	=	32-14				
		$=$	18				
\Rightarrow	$(x-3)^{2}$	$=$	$\underline{18}$				
			2				
		$=$	9				
\Rightarrow	$x-3$	=	$\sqrt{9}$				
\Rightarrow	$x-3$	$=$	-3	\Rightarrow	$x-3$	$=$	3
\Rightarrow	x	=	$-3+3$		x	=	$3+3$
		=	0			=	6
\Rightarrow	A	$=$	$(0,14)$	\Rightarrow	B	$=$	$(6,14)$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. equates $32-2(x-3)^{2}=14$ or similar and stops.
High partial credit: (4 marks)	-	Finds only one value of x correctly and hence finds only co-ordinates of A or B.
	$-\quad$Finds both values of x correctly, but fails to give co-ordinates of A and B.	

9(b) (cont'd.)
(ii) Use the trapezoidal rule and interval widths of 1 m to find the approximate area of the shaded cross-section of earth material to be excavated between the elevation of the terrain and the proposed elevation of the roadway.
$f(x)$

x	0	1	2	3	4	5	6
$y=f(x)$	14	24	30	32	30	24	14

(1) Area under curve of $y=f(x)$

$$
\begin{array}{ll}
= & \frac{h}{2}\left[y_{1}+y_{n}+2\left(y_{2}+y_{3}+y_{4}+\ldots+y_{n-1}\right)\right] \\
= & \frac{1}{2}(1)[14+14+2(24+30+32+30+24)] \\
= & (0 \cdot 5)[28+2(140)] \\
= & (0 \cdot 5)[28+280)] \\
= & (0 \cdot 5)[308] \\
& 154 \mathrm{~m}^{2}
\end{array}
$$

(2) Shaded area $=\quad$ Area above - Area of rectangular box between $y=14$ and x-axis
$=154-(6 \times 14)$
$=154-84$
$=70 \mathrm{~m}^{2}$
Scale $5 C^{*}(0,2,3,4,5)$

Low partial credit: (2 marks)	-	Any work of merit, e.g. writes down correct formula for trapezoidal rule with some correct substitution and stops.				
	-	Finds $f(x)$ for $x=1,2,3,4,5,6$ and stops.	$	$		Fully correct substitution into trapezoidal rule, but fails to find correct value for area under the curve.
:---	:---	:---				
Mid partial credit: (3 marks)	-Finds correct area under curve but fails to finish or finishes incorrectly.					
High partial credit: (4 marks)						

* Deduct 1 mark off correct answer only for the omission of or incorrect units - apply only once throughout the question.

9(b) (cont'd.)
(iii) Use integration to find the actual area of the shaded cross-section.

$$
\begin{aligned}
& \text { (1) Actual area under curve of } y=f(x) \\
& =\int_{0}^{6} f(x) d x \\
& =\quad 32-2(x-3)^{2} \\
& =\quad 32-2\left(x^{2}-6 x+9\right) \\
& =-2 x^{2}+12 x+32-18 \\
& =\quad-2 x^{2}+12 x+14 \\
& \text { Actual area under curve of } y=f(x) \\
& =\int_{0}^{6}\left(-2 x^{2}+12 x+14\right) d x \\
& =\quad-\frac{2 x^{3}}{3}+\frac{12 x^{2}}{2}+\left.14 x\right|_{0} ^{6} \\
& =\quad-\frac{2}{3}(6)^{3}+6(6)^{2}+14(6)-0 \\
& =-144+216+84 \\
& =\quad-144+216+84 \\
& =156 \mathrm{~m}^{2} \\
& \text { (2) Shaded area }=\quad \text { Area above - Area of rectangular box between } y=14 \\
& \text { and } x \text {-axis } \\
& =156-(6 \times 14) \\
& =156-84 \quad \text {... from part (b)(ii) } \\
& =72 \mathrm{~m}^{2}
\end{aligned}
$$

** Accept students' answers from part (b)(ii) if not oversimplified.
Scale 10D* $(0,4,6,8,10)$
\(\left.$$
\begin{array}{|lll|}\hline \text { Low partial credit: (4 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. simplifies } \\
\text { correctly } f(x)=-2 x^{2}+12 x+14 \\
\text { or gives }\end{array}
$$

\& area=\int_{0}^{6}\left[32-2(x-3)^{2}\right] d x and stops.\end{array}\right]\)\begin{tabular}{ll}

\& | Simplifies and integrates $f(x)$ correctly, |
| :--- |
| but fails to evaluate $\underline{\text { or evaluates incorrectly }}$ |
| or evaluates using incorrect limits. |

\hline Mid partial credit: (6 marks) \& -

\hline Finds correct area under curve but fails

to finish or finishes incorrectly.
\end{tabular}

* Deduct 1 mark off correct answer only $\mathbf{(1)}$ if final answer(s) are not rounded or incorrectly rounded or $\mathbf{2}$ for the omission of or incorrect use of units (' m ') - apply only once to each section (a), (b), (c), etc. of question.

9(c) An alternative proposal is to construct the new roadway at an elevation of 24 m above sea-level. Find, correct to two decimal places, the percentage reduction in the cross-section of material to be excavated if this proposal was adopted.
(10D*)

$$
\begin{aligned}
& \text { (1) } f(x) \\
& =\quad 32-2(x-3)^{2} \\
& \begin{array}{lr}
\Rightarrow & 32-2(x-3)^{2} \\
\Rightarrow & 2(x-3)^{2}
\end{array} \\
& =24 \\
& =24 \\
& \Rightarrow \quad=8 \\
& \Rightarrow \quad(x-3)^{2} \quad=\quad 4 \\
& \Rightarrow \quad x-3 \quad=\quad \sqrt{4} \\
& \Rightarrow \quad x-3 \quad=\quad-2 \quad=\quad x-3 \quad=\quad 2 \\
& \begin{array}{lllll}
\Rightarrow x & = & -2+3 & x & \\
& = & 2+3 \\
& & & =5
\end{array} \\
& \text { (2) Area under curve of } y=f(x) \text { above } y=24 \\
& =\quad \int_{1}^{5} f(x) d x-[24 \times(5-1)] \\
& =\quad \int_{1}^{5}\left(-2 x^{2}+12 x+14\right) d x-96 \quad \text {... from part (b)(iii) } \\
& =\quad-\frac{2 x^{3}}{3}+\frac{12 x^{2}}{2}+\left.14 x\right|_{1} ^{5}-96 \\
& =-\frac{2}{3}(5)^{3}+6(5)^{2}+14(5)-\left[-\frac{2}{3}(1)^{3}+6(1)^{2}+14(1)\right]-96 \\
& =-\frac{250}{3}+150+70+\frac{2}{3}-6-14-96 \\
& =104-\frac{248}{3} \\
& =\frac{312-248}{3} \\
& =\quad \frac{64}{3} \mathrm{~m}^{2}
\end{aligned}
$$

3 Percentage reduction in excavated material

$$
\begin{aligned}
\text { \% Reduction } & =\frac{72-\frac{64}{3}}{72} \times \frac{100}{1} \\
& =\frac{\frac{152}{3}}{72} \times \frac{100}{1} \\
& =70 \cdot 370370 \ldots \\
& \cong 70 \cdot 37 \%
\end{aligned}
$$

** Accept students' answers from part (b)(ii) if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. equates $32-2(x-3)^{2}=24$ with work towards finding values of x.
Mid partial credit: (6 marks)	-	Simplifies and integrates $f(x)$ correctly, with some substitution of limits, but fails to evaluates correctly or evaluates using incorrect limits.
		Finds correct area under curve but fails to find or finishes incorrect $\%$ reduction.
High partial credit: (8 marks)		

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once in each section (a), (b), (c), etc. of question.

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level - Paper 2
 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect).
Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.
These scales and the marks that they generate are summarised in the following table:

Scale label	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
No. of categories	2	3	4	5
5 mark scale		$\mathbf{0 , 2 , 5}$	$\mathbf{0 , 2 , 4 , 5}$	$\mathbf{0 , 2 , 3 , 4 , 5}$
10 mark scale			$\mathbf{0 , 4 , 7 , 1 0}$	$\mathbf{0 , 4 , \mathbf { 6 } , \mathbf { 8 } , \mathbf { 1 0 }}$
15 mark scale				$\mathbf{0 , 6 , 1 0 , 1 3 , 1 5}$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving (1) incorrect rounding, (2) omission of units, $\mathbf{3}$ a misreading that does not oversimplify the work or $\mathbf{4}$ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk.
Thus, for example, scale 10C* indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only within each section (a), (b), (c), etc. of all questions.
- The * penalty is not applied to currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.
Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Summary of Marks - 2017 LC Maths (Higher Level, Paper 2)

Q. 1	(a)	$10 \mathrm{D}(0,4,6,8,10)$
	(b)	$10 \mathrm{D}(0,4,6,8,10)$
	(c)	5B $(0,2,5)$

Q. $2 \quad$ (a) (i) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(b) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$

25

Q. 3	(a)	$5 \mathrm{C}(0,2,4,5)$
	(b)	$10 \mathrm{D}(0,4,6,8,10)$
	(c)	$10 \mathrm{D}(0,4,6,8,10)$

25
Q. $7 \quad$ (a) (i) $\quad 5 \mathrm{~B}(0,2,5)$
(ii) $\quad 10 \mathrm{C}(0,4,7,10)$
(iii) $5 \mathrm{C}(0,2,4,5)$
(b) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $10 \mathrm{D}^{*}(0,4,6,8,10)$
(iii) $5 \mathrm{C} *(0,2,4,5)$
\qquad
(c)
$10 D^{*}(0,4,6,8,10)$
50
Q. $8 \quad$ (a) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 10 \mathrm{C}(0,4,7,10)$
(b) (i) $\quad 15 \mathrm{D}(0,6,10,13,15)$
(ii) $5 \mathrm{C}(0,2,4,5)$
(c) (i) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(ii) $\quad 5 \mathrm{D}(0,2,3,4,5)$

50
Q. 4 (a) (i) $5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(iii) $\quad 5 \mathrm{C}(0,2,4,5)$
(b) $\quad 5 \mathrm{C}(0,2,4,5)$
(c)

5C (0, 2, 4, 5)
Q. 9 (a)
(i) $\quad 10 \mathrm{C}(0,4,7,10)$
$\left.\begin{array}{l}\text { (ii) } \\ \text { (iii) }\end{array}\right] 5 \mathrm{C}(0,2,4,5)$
(iv) $\quad 10 \mathrm{C}(0,4,7,10)$
(b) $\quad 15 \mathrm{D}(0,6,10,13,15)$
(c) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(a) $\quad 5 \mathrm{C}(0,2,4,5)$
(b) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(c) $\quad 5 \mathrm{D}(0,2,3,4,5)$

25
Q. 6 (a) (i) $5 \mathrm{D}^{*}(0,2,3,4,5)$
(ii) $10 \mathrm{D}^{*}(0,4,6,8,10)$
(b) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$

25

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all questions.
Marks will be lost if all necessary work is not clearly shown.
Answers should include the appropriate units of measurement, where relevant.
Answers should be given in simplest form, where relevant.

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level - Paper 2
Marking Scheme (300 marks)

Section A

Answer all six questions from this section.

Two points $P(-4,-7)$ and $Q(1,3)$ lie on opposite sides of the line $l: 2 x+y+7=0$.
1(a) Calculate the ratio of the shortest distances from P and Q to line l.

$$
\begin{aligned}
& \left|d_{\text {min }}\right|=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& P(-4,-7), l: 2 x+y+4=0 \\
& \Rightarrow\left|P l_{\min }\right| \quad=\frac{|2(-4)+1(-7)+7|}{\sqrt{(2)^{2}+(1)^{2}}} \\
& =\frac{|-8-7+7|}{\sqrt{4+1}} \\
& =\frac{8}{\sqrt{5}} \\
& Q(1,3), l: 2 x+y+7=0 \\
& \Rightarrow\left|Q l_{\text {min }}\right| \quad=\frac{|2(1)+1(3)+7|}{\sqrt{(2)^{2}+(1)^{2}}} \\
& =\frac{|2+3+7|}{\sqrt{4+1}} \\
& =\frac{12}{\sqrt{5}} \\
& \Rightarrow \quad\left|P l_{\text {min }}\right|:\left|Q l_{\text {min }}\right| \quad=\quad \frac{8}{\sqrt{5}}: \frac{12}{\sqrt{5}} \\
& =8: 12 \\
& =\quad 2: 3
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down shortest distance $=\perp$ distance with formula stated.
	-	Some correct substitution into formula for \perp distance $(a, b, c$ identified $)$.
Mid partial credit: $(6$ marks $)$	-	Finds correct $\left\|P l_{\min }\right\| \underline{\text { or }}\left\|Q l_{\text {min }}\right\|$.
High partial credit: $(8$ marks $)$	-	Finds both $\left\|P l_{\min }\right\| \underline{\text { or }}\left\|Q l_{\min }\right\|$, but fails to finish or finishes incorrectly.

1(b) Calculate the ratio of the distances from P and Q to line l along the line $[P Q]$.
(1) $\quad \frac{\text { Slope of } P Q}{P(-4,-7), Q(1,3)}$

$$
\begin{aligned}
\Rightarrow \quad m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\Rightarrow \quad m_{P Q}(\text { slope of } P Q) & =\frac{3-(-7)}{1-(-4)} \\
& =\frac{10}{5} \\
& =2
\end{aligned}
$$

(2) Equation of $P Q$
$Q(1,3), m_{P Q}=2$

	$y-y_{1}$	$=$
\Rightarrow	$y\left(x-x_{1}\right)$	
\Rightarrow	$y-(3)$	$=$
\Rightarrow	$2(x-3$	
\Rightarrow	$2 x-y$	
\Rightarrow	$2 x-y$	

$3 \quad P Q \cap l$
$\Rightarrow \quad$ point of intersctoion $R(-2,-3)$
(4) Distances $|P R|$ and $|Q R|$

$$
\begin{aligned}
\Rightarrow \quad|d| & = \\
& \quad \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\Rightarrow \quad|P R|-4,-7), R(-2,-3) & \\
& =\sqrt{(-2-(-4))^{2}+(-3-(-7))^{2}} \\
& =\sqrt{(2)^{2}+(4)^{2}} \\
& =\sqrt{20} \\
& =2 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
Q(1,3), R(-2,-3) & \\
\Rightarrow \quad|Q R| & =\sqrt{(-2-1)^{2}+(-3-3)^{2}} \\
& =\sqrt{(-3)^{2}+(-6)^{2}} \\
& =\sqrt{45} \\
& =3 \sqrt{5}
\end{aligned}
$$

©
Ratio

$$
\begin{aligned}
|P R|:|Q R| & =2 \sqrt{5}: 3 \sqrt{5} \\
& =2: 3
\end{aligned}
$$

1(b) (cont'd.)
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)		Any relevant first step, e.g. writes down correct relevant formula for slope, equation of a line or distance. Finds correct slope of $P Q$ and stops. Finds incorrect slope of $P Q$ and some correct substitution into the formula for the equation of the line $P Q$.
Mid partial credit: (6 marks)	-	Finds correct equation for $P Q$ and stops. Finds incorrect equation for $P Q$ and continues with substantial work towards finding point of intersection of $P Q$ and l.
High partial credit: (8 marks)	- - -	Finds correct point of intersection of $P Q$ and l and continues with substantial work towards finding distances of P and Q to l. Finds correct distances of P and Q to l, but fails to finish or finishes incorrectly, e.g. $\|P R\|:\|Q R\|=\sqrt{20}: \sqrt{45}$.

1(c) What conclusion can you draw from your answers to parts (a) and (b) above? Explain your answer with reference to a geometric theorem on your course.
(1)
as $\quad\left|P l_{\text {min }}\right|:\left|Q l_{\text {min }}\right|=2: 3$
$\Rightarrow \frac{|Q M|}{|P N|}=\frac{3}{2}$
and $|P R|:|Q R|=2: 2$
$\Rightarrow \frac{|Q R|}{|P R|}=\frac{3}{2}$

$\Rightarrow \quad \triangle Q M R$ and $\triangle P N R$ are similar (equiangular)
(2) Geometric theorem

- if two triangles are similar, then their corresponding sides are in proportion (Theorem 13)
** Accept students' answers from parts (a) and (b) if not oversimplified.
Scale 5B (0, 2, 5)
Partial credit: (2 marks)
- Any relevant first step, e.g. mentions similar triangles and stops.

2(a) (i) Prove that $\cos (A-B)=\cos A \cos B+\sin A \sin B$.
s is a circle with centre $O(0,0)$ and radius 1
Let $P(\cos A, \sin A)$ be any point on the circle such that [$O P$] makes an angle A with the positive sense of the x-axis

Let $Q(\cos B, \sin B)$ be another point on the circle such that [OQ] makes an angle B with the positive sense of the x-axis

(1) Using distance formula:

$$
\begin{aligned}
\Rightarrow \quad|P Q| & =\sqrt{(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2}} \\
\Rightarrow \quad|P Q|^{2} & =(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2} \\
& =\cos ^{2} A-2 \cos A \cos B-\cos ^{2} B+\sin ^{2} A-2 \sin A \sin B-\sin ^{2} B \\
& =\left(\cos ^{2} A+\sin ^{2} A\right)+\left(\cos ^{2} B+\sin ^{2} B\right)-2[\cos A \cos B+\sin A \sin B] \\
& =1+1-2[\cos A \cos B+\sin A \sin B] \\
& =2-2[\cos A \cos B+\sin A \sin B]
\end{aligned}
$$

(2) Using cosine rule:

$$
\begin{aligned}
& =b^{2}+c^{2}-2 b c \cos A \\
\Rightarrow|P Q|^{2} & = \\
\Rightarrow \quad|P Q|^{2} & =\left.P\right|^{2}+|O Q|^{2}-2|O P| \cdot|O Q| \cos |\angle P O Q| \\
& =2-2 \cos (A-B)
\end{aligned}
$$

(3) Equating results from $\mathbf{1}$ and (2:

$$
\begin{array}{llll}
& 2-2 \cos (A-B) & = & 2-2[\cos A \cos B+\sin A \sin B] \\
\Rightarrow & 2 \cos (A-B) & = & 2[\cos A \cos B+\sin A \sin B] \\
\Rightarrow \quad \cos (A-B) & = & \cos A \cos B+\sin A \sin B
\end{array}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. draws correct diagram with co-ordinates of P and/or Q indictaed and stops.
	-	Some correct substitution into either distance formula or cosine rule.
Mid partial credit: (6 marks)	-	Finds one correct expression for $\|P Q\|^{2}$ or $\|P Q\|$.
	-	Some correct substitution into both distance formula and cosine rule, but incomplete.
High partial credit: (8 marks)	-	Finds correct both expressions for $\|P Q\|^{2}$ and $\|P Q\|$, but fails to finish or finishes
	-	incorrectly. Proof complete with one critical step omitted or incorrect.

Question 2 (cont'd.)

2(a) (cont'd.)
(ii) Hence, show that $\cos 15^{\circ}=\frac{\sqrt{2}+\sqrt{6}}{4}$, without using a calculator.

$$
\begin{align*}
\cos (A-B) & =\cos A \cos B+2 \sin A \sin B \tag{5C}\\
\cos 15^{\circ} & =\cos \left(60^{\circ}-45^{\circ}\right) \\
& =\cos 60^{\circ} \cos 45^{\circ}+\sin 45^{\circ} \sin 45^{\circ} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} \\
& =\frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{align*}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. identifies angles $A=60^{\circ}$ and $B=45^{\circ}$ or $A=45^{\circ}$ - Find $B=30^{\circ}$.
High partial credit: $\left(4\right.$ marks $15^{\circ}=\cos \left(60^{\circ}-45^{\circ}\right) \underline{\text { and stops. } .}$		
	-	Finds $\cos 15^{\circ}=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$,
	$\underline{\text { or equivalent, but fails to finish }}$	
	$\underline{\text { or finishes incorrectly. }}$	
-	Finds $\cos 15^{\circ}=\frac{1+\sqrt{3}}{2 \sqrt{2}} \underline{\text { and stops }}$	
	$\underline{\text { or continues incorrectly. } .}$	

(b) (i) Given that $\cos (A-B)=2 \cos (A+B)$, show that $3 \tan A=\frac{1}{\tan B}$.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. expands $2 \cos (A+B)$ correctly and stops.
High partial credit: (4 marks)		Equates correctly both sides, i.e. finds $3 \sin A \sin B=\cos A \cos B$, but fails to finish or finishes incorrectly.

2(b) (cont'd.)
(ii) Hence, solve the equation $\cos \left(\theta-\frac{\pi}{6}\right)=2 \cos \left(\theta+\frac{\pi}{6}\right)$, where $0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
& \text { For } \begin{array}{rll}
\cos (A-B) & =2 \cos (A+B) & \\
3 \tan A & =\frac{1}{\tan B} & \ldots \text { from part (b)(i) }
\end{array} \\
& \text { Let } A=\theta \text { and } B=\frac{\pi}{6} \\
& \Rightarrow 3 \tan \theta \quad=\quad \frac{1}{\tan \frac{\pi}{6}} \\
& =\frac{1}{\frac{1}{\sqrt{3}}} \text {. } \\
& =\sqrt{3} \\
& \Rightarrow \tan \theta \quad=\frac{\sqrt{3}}{3} \\
& =\frac{1}{\sqrt{3}} \\
& \Rightarrow \quad \theta \quad=\quad \tan ^{-1} \frac{1}{\sqrt{3}}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down
	$A=\theta$ and/or $B=\frac{\pi}{6} \underline{\text { and stops. }}$	
	-	Finds $3 \tan \theta=\frac{1}{\tan \frac{\pi}{6}} \underline{\text { and stops }}$
		$\underline{\text { or continues incorrectly. }}$
High partial credit: (4 marks)	-	Finds $\tan \theta=\frac{\sqrt{3}}{3} \underline{\text { or }} \frac{1}{\sqrt{3}}$, but fails to
	finish or finishes incorrectly. Finds one solution only.	

Circle $s: x^{2}+y^{2}+2 g x+2 f y+c=0$ touches the y-axis at the point $A(0,-2)$.
3(a) Write down the value of f and hence, show that c is equal to 4 .

Scale 5C (0, 2, 4, 5)
\(\left.$$
\begin{array}{|lll|}\hline \text { Low partial credit: (2 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. substitutes } \\
A(0,-2) \text { into } s, \text { but fails to find correct } \\
\text { value of } f \text { ans. } 4-4 f+c=0] .\end{array}
$$

\& - \& Finds f=2 and stops.\end{array}\right]\)\begin{tabular}{ll}

\& | Finds $f=2$ and substitutes $A(0,-2)$ into s, |
| :--- |
| but fails to finish or finishes incorrectly. |

\hline High partial credit: (4 marks) \& $-\quad$| Finds $f=-2$ and substitutes $A(0,-2)$ |
| :--- |
| into s and finishes correctly [ans. $c=12]$. |

\&
\end{tabular}

3(b) The centre of s lies in the third quadrant and s makes a chord of length $4 \sqrt{3}$ on the x-axis. Find the value of g and hence, write down the equation of s.
(10D)

$$
\begin{aligned}
& \text { (1) Let }[P Q] \text { be the chord of circle on the } x \text {-axis } \\
& \Rightarrow|P Q|=4 \sqrt{3} \\
& \text { Using Pythagoras' theorem } \\
& =4+(2 \sqrt{3})^{2} \\
& =4+12 \\
& =16 \\
& =4 \\
& \text { (2) } s: x^{2}+y^{2}+2 g x+2 f y+c=0 \text { has centre }(-g,-f) \text { and radius } r \\
& \Rightarrow r=\sqrt{g^{2}+f^{2}-c} \\
& \Rightarrow r^{2} \quad=\quad g^{2}+f^{2}-c \\
& \Rightarrow 4^{2} \quad=\quad g^{2}+(-2)^{2}-4 \\
& \Rightarrow 16 \quad=\quad g^{2}+4-4 \\
& \Rightarrow \quad g \quad=\sqrt{16} \\
& = \pm 4 \\
& \text { as centre of circle lies in 3rd quadrant [centre }(-g,-f) \text {] } \\
& \Rightarrow \quad g \quad=\quad 4 \\
& \text { (3) } s: x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& \text { centre }(-g,-f)=(-4,-2) \\
& c \quad=4 \\
& \Rightarrow \quad s: x^{2}+y^{2}+2(4) x+2(2) y+4=0 \\
& \Rightarrow \quad s: x^{2}+y^{2}+8 x+4 y+4=0
\end{aligned}
$$

** Accept students' answers from parts (a) if not oversimplified.
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. some correct use of Pythagoras' theorem with 2 and $2 \sqrt{3}$, but fails to find correct value of r.
Mid partial credit: (6 marks)	-	Finds $r=4$ and substitutes into formula $r=\sqrt{g^{2}+f^{2}-c}$ or $r^{2}=g^{2}+f^{2}-c$, but fails to find correct value of g.
		Finds $g=4$, but fails to find or finds incorrect equation of s.
High partial credit: (8 marks)	$-\quad$Finds $g=-4$ and finishes correctly [ans. $c=12]$.	

3(c) Find the equations of the two tangents from the origin to s.

$$
\begin{aligned}
& \text { (1) Equation of first tangent } \\
& y \text {-axis passes through }(0,0) \text { and is a tangent to } s \text { at } A(0,-2) \\
& \Rightarrow \quad t_{1}: x \quad=0 \\
& \text { (2) Equation of second tangent } \\
& \text { point }(0,0) \text {, slope } m \\
& \begin{array}{lll}
& y-y_{1} & \\
\Rightarrow & & m\left(x-x_{1}\right) \\
\Rightarrow y-0 & y & \\
\Rightarrow & & m(x-0) \\
\Rightarrow & t_{2}: m x-y & \\
& & m x \\
\end{array} \\
& \text { (3) } \quad \perp \text { distance from centre of circle to tangent } \\
& \text { centre of } s(-4,-2), r=4 \\
& \Rightarrow \quad \perp \text { distance to } t_{2} \quad=\quad 4 \\
& \text { Perpendicular distance from a point }\left(x_{1}, y_{1}\right) \text { to line } a x+b y+c=0 \\
& |d| \quad=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& \Rightarrow 4=\frac{|m(-4)-(-2)+0|}{\sqrt{(m)^{2}+(-1)^{2}}} \\
& =\frac{|-4 m+2|}{\sqrt{m^{2}+1}} \\
& \Rightarrow 4 \sqrt{m^{2}+1} \quad=\quad|-4 m+2| \\
& \Rightarrow 4^{2}\left(m^{2}+1\right) \quad=\quad(-4 m+2)^{2} \\
& \Rightarrow 16 m^{2}+16 \quad=\quad 16 m^{2}-16 m+4 \\
& \Rightarrow 16 m \quad=\quad 4-16 \\
& =-12 \\
& \Rightarrow \quad=\quad-\frac{12}{16} \\
& =-\frac{3}{4} \\
& \text { (4) Equation of } t_{2}: m x-y=0 \\
& \Rightarrow \quad-\frac{3}{4} x-y \quad=0 \\
& \Rightarrow \quad t_{2}: y=-\frac{3}{4} x \text { or } 3 x+4 y=0
\end{aligned}
$$

** Accept students' answers from parts (a) and (b) if not oversimplified.
Scale 10D (0, 4, 6, 8, 10) Low partial credit: (4 marks) - Any relevant first step, e.g. writes down formula for \perp distance and stops.
Substitutes $(0,0)$ correctly into equation of a line to find t_{2}, i.e. $y-0=m(x-0)$ and stops.
Finds $t_{1}: x=0$ and stops.
Mid partial credit: (6 marks) $\quad-\quad$ Substitutes fully into \perp distance formula, i.e. $4=\frac{|m(-4)-(-2)+0|}{\sqrt{(m)^{2}+(-1)^{2}}}$, but fails to
find correct value of m.
High partial credit: (8 marks) - Finds correct value of m, but fails to find or finds incorrect equation of t_{2}.

- Substantially correct work with one error and equation of both tangents found.
** Award full marks for $t_{1}: x=0 \underline{\text { and }} t_{2}: m=-\frac{3}{4}$.

Pat and Mark are playing against each other in a darts match. The winner is the first player to win two of three legs (games). Pat is a better player and the probability of him winning an individual leg against Mark is $\frac{3}{5}$.

4(a) (i) Find the probability that Pat wins the match after just two legs.

$$
P \text { (Pat wins) } \quad=\frac{3}{5}
$$

P (Pat wins the match after just two legs)

$$
\begin{aligned}
& =P(\text { Pat wins } 1 \text { st leg })+P(\text { Pat wins } 2 \text { nd leg }) \\
& =\frac{3}{5} \times \frac{3}{5} \\
& =\frac{9}{25} \text { or } 0.36
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct explanation of probability that Pats wins after 2 legs, e.g. ' P (wins 1st leg) $+P($ wins 2 nd leg $)$. Correct probabilities chosen, but incorrect operator used.
High partial credit: (4 marks)	-	Correct probabilities chosen and correct operator, i.e. $P($ wins $)=\frac{3}{5} \times \frac{3}{5}$, but fails to express as a single fraction or equivalent.

(ii) Find the probability that Pat wins the match.

$$
\begin{aligned}
P(\text { Pat wins }) & =\frac{3}{5} \\
\Rightarrow \quad P(\text { Mark wins }) & =1-\frac{3}{5} \\
& =\frac{2}{5}
\end{aligned}
$$

P (Pat wins the match)

$$
\begin{aligned}
& =\quad P(\text { Pat wins in } 2 \text { legs })+P(\text { Pat wins in } 3 \text { legs }) \\
& =\quad \frac{9}{25}+\left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right)+\left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}\right) \\
& =\frac{9}{25}+\frac{18}{125}+\frac{18}{125} \\
& =\frac{81}{125} \text { or } 0.648
\end{aligned}
$$

** Accept students' answers from part (a)(i) if not oversimplified.
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. writes down correct explanation of probability that Pat wins in 3 legs, e.g. ' $P(\mathrm{~W} \times \mathrm{L} \times \mathrm{W})$ ' or ' $P(\mathrm{~L} \times \mathrm{W} \times \mathrm{W})$ '. Finds one correct probability of winning in 3 legs, i.e. $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right) \underline{\text { or }}\left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}\right)$

High partial credit: (4 marks) - Finds all probabilities and operators correct, i.e. $\frac{9}{25}+\left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right)+\left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}\right)$, but fails to express result as a single fraction or equivalent.

4(a) (cont'd.)
(iii) Find the probability that Pat wins exactly one leg.

$$
\begin{align*}
P(\text { Pat wins }) & =\frac{3}{5} \tag{5C}\\
\Rightarrow \quad P(\text { Mark wins }) & =\frac{2}{5} \\
P \text { (Pat wins exactly } & =\text { one leg) } \\
& =P(\text { Pat wins first leg only } \text { or } P \text { (Pat wins 2nd leg only) } \\
& =\left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right)+\left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right) \\
& =\frac{12}{125}+\frac{12}{125} \\
& =\frac{24}{125} \text { or } 0.192
\end{align*}
$$

** Explanation: Pat must win either the first or second leg of the match as it will be over if Mark wins the first two legs (no requirement to play the third leg).

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct explanation of probability that Pat wins only 1 leg, e.g. ' $P(\mathrm{~W} \times \mathrm{L} \times \mathrm{L})$ ' or ' $P(\mathrm{~L} \times \mathrm{W} \times \mathrm{L})$ '. Finds one correct probability of winning 1 leg , i.e. $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right) \underline{\text { or }}\left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$.
High partial credit: (4 marks)	-	Finds all probabilities and operators correct, i.e. $\frac{9}{25}+\left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right)+\left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$, but fails to express result as a single fraction or equivalent.

4(b) Find the probability that the match requires three legs to decide the winner.
P (match requires three legs)

$$
\begin{aligned}
& =1-[P(\text { Pat wins after } 2 \text { legs })+P(\text { Mark wins after } 2 \text { legs })] \\
& =1-\left(\frac{3}{5} \times \frac{3}{5}\right)-\left(\frac{2}{5} \times \frac{2}{5}\right) \\
& =1-\frac{9}{25}-\frac{4}{25} \\
& =\frac{12}{25} \text { or } 0.48
\end{aligned}
$$

** Accept students' answers from part (a)(i) if not oversimplified.
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct explanation of probability that match requires 3 legs, e.g. ' $1-P$ (Pat and/or Mark wins after 2 legs)'. Finds one correct probability of winning 1 leg , i.e. $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right) \underline{\text { or }}\left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$.
High partial credit: (4 marks)	-	Finds all probabilities and operators correct, i.e. $1-\left(\frac{3}{5} \times \frac{3}{5}\right)-\left(\frac{2}{5} \times \frac{2}{5}\right)$, but fails to express result as a single fraction or equivalent.

(c) Given that Pat wins the match, find the probability that he wins the first leg.

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
& \Rightarrow \quad P(\text { Pat wins first leg } \mid \text { Pat wins the match }) \\
&=\frac{\frac{9}{25}+\frac{18}{125}}{\frac{81}{125}} \\
&=\frac{63}{125} \times \frac{125}{81} \\
&=\frac{63}{81} \text { or } \frac{7}{9} \text { or } 0.777777 \ldots
\end{aligned}
$$

** Accept students' answers from parts (a)(i) and (a)(ii) if not oversimplified.
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down explanation of or defines conditional probability, i.e. $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.
	-	Finds $P($ Pat wins first leg and wins match $)$,
	i.e. $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right)+\left(\frac{3}{5} \times \frac{3}{5}\right)$.	
High partial credit: (4 marks) $\quad-\quad$ Finds all probabilities and operators correct,		
	i.e. $\left(\frac{9}{25} \times \frac{18}{125}\right) / \frac{81}{125}$, but fails to express	
	result as a single fraction or equivalent.	

In the standard game of poker, each player receives five cards, called a hand. The player with the best hand, the best combination of cards, is the winner. The game is normally played with a pack consisting of 52 cards in four suits:

13 hearts (\downarrow)	$:$	$2,3,4,5,6,7,8,9,10$, J, Q, K, A
13 diamonds (\bullet)	$:$	$2,3,4,5,6,7,8,9,10$, J, Q, K, A
13 clubs (\bullet)	$:$	$2,3,4,5,6,7,8,9,10$, J, Q, K, A
13 spades (\uparrow)	$:$	$2,3,4,5,6,7,8,9,10$, J, Q, K, A

5(a) (i) Find the number of possible hands a player can receive.

$$
\begin{aligned}
\text { \#hands } & =\binom{52}{5} \\
& ={ }^{52} C_{5} \\
& =\frac{52!}{5!(52-5)!} \\
& =2,598,960
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. writes down $' \#$ hands $=\binom{52}{5} \underline{\text { or }}{ }^{52} C_{5}$ ' $\underline{\text { and stops } . ~}$ Writes downs or evaluates correctly ${ }^{52} P_{5}$, i.e. $52 \times 51 \times 50 \times 49 \times 48$ or $311,875,200$.
High partial credit: (4 marks)		Finds $\frac{52!}{5!(52-5)!}$, but fails to evaluate or evaluates incorrectly.

5(b) (i) The best hand is a 'royal flush', which consists of $10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}, \mathrm{A}$ of the same suit.
Find the probability of a royal flush, as a fraction.

$$
\begin{aligned}
P(\text { Royal flush }) & =\frac{1}{2,598,960} \times 4 \\
& =\frac{1}{649,740}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	$\begin{array}{r}- \\ - \\ \\ \\ \\ \hline\end{array}$	Any relevant first step, e.g. writes down ' 4 different royal flushes' and stops. Writes down $\frac{1}{52} \times \frac{1}{51} \times \frac{1}{50} \times \frac{1}{49} \times \frac{1}{48} \times 4$ or evaluates correctly [ans. $\frac{4}{311,875,200}$ or $\left.\frac{1}{77,968,800}\right]$. Writes down $\frac{1}{2,598,960}$ and stops.
High partial credit: (4 marks)		Finds $\frac{4}{2,598,960}$ or equivalent, but fails to express in its singlest form.

5(b) (cont'd.)
(ii) The next most valuable hand is a 'straight flush', which is five cards in sequential order, all of the same suit. As part of a straight flush, an ace can rank either above a King or below a 2 (e.g. $7,8,9,10$, J or A, 2, 3, 4, 5 is a straight flush).
List all the ways that a straight flush can be achieved in the same suit and hence, find the probability of a straight flush. Give your answer as a fraction.

$$
\begin{align*}
& \text { (1) List ways to achieved straight flush (same suit) } \tag{10D}\\
& \left.\begin{array}{lll}
\text { Straight flush } & - & \mathrm{A}, 2,3,4,5 \\
& - & 2,3,4,5,6 \\
& - & 3,4,5,6,7 \\
& - & 4,5,6,7,8 \\
& - & 6,6,7,8,8,9 \\
& - & 7,8,9,10, \mathrm{~J} \\
& - & 8,9,10, \mathrm{~J}, \mathrm{Q} \\
& - & 9,10, \mathrm{~J}, \mathrm{Q}, \mathrm{~K}
\end{array}\right] \times 9 \\
& \\
& \\
& \text { (2) } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{align*}
$$

Scale 10D (0, 4, 6, 8, 10)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (4 marks) \& - \& Any relevant first step, e.g. writes down at least 5 ways in which a straight flush can be achieved. \\
\hline Mid partial credit: (6 marks) \& - \& \begin{tabular}{l}
Lists all nine ways in which a straight flush can be achieved. \\
Fails to list ways to achieve straight flush, but finds \(P(\) Straight flush \()=\frac{10}{2,598,960} \times 4\).
\end{tabular} \\
\hline High partial credit: (8 marks) \& -

-
- \& Fails to list ways to achieve straight flush, but finds $P($ Straight flush $)=\frac{9}{2,598,960} \times 4$. Lists all ways to achieve straight flush and finds $\frac{9}{2,598,960}$, but fails to multiply by 4 (different possible suits). Lists 10 ways (including 'royal flush') in which a straight flush can be achieved and evaluates probability correctly, i.e.

$$
P(\text { Straight flush })=\frac{10}{2,598,960} \times 4
$$

\hline
\end{tabular}

5(c) Another valuable hand is a 'full house', which is three cards of one denomination and two cards of another denomination (e.g. three Jacks and two 5 s is a full house).
Find the probability of a full house, as a fraction.

Scale 5D (0, 2, 3, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. writes down $\binom{4}{3} \times 13,{ }^{4} C_{3} \times 13,\binom{4}{2} \times 12$ or $^{4} C_{2} \times 12$ (evaluated or not). Writes down $\frac{1}{52} \times \frac{1}{51} \times \frac{1}{50} \times \frac{1}{49} \times \frac{1}{48} \times 4$ or evaluates correctly [ans. $\frac{4}{311,875,200}$ or $\left.\frac{1}{77,968,800}\right]$. Writes down $\frac{1}{2,598,960}$ and stops.
Mid partial credit: (3 marks)		Finds $\left[\binom{4}{3} \times 13\right] \times\left[\binom{4}{2} \times 12\right]$, buts fails to divide by $\binom{52}{5}$.
High partial credit: (4 marks)	-	Finds $\left[\binom{4}{3} \times 13\right] \times\left[\binom{4}{2} \times 12\right] /\binom{52}{5}$ or equivalent, but fails to express in its singlest form.

6(a) Two circles, each of radius 4 units, intersect at the points C and D, as shown. The distance between the centres of the circles, A and B, is 6 units.

(i) Find $|\angle C A D|$, correct to two decimal places.

$$
\begin{aligned}
\cos |\angle C A M| & =\frac{|A M|}{|A C|} \\
& =\frac{3}{4} \\
\Rightarrow \quad|\angle C A M| & =\cos ^{-1} 0.75 \\
& =41.409622 \ldots \\
\Rightarrow \quad|\angle C A D| & =2|\angle C A M| \\
& =2(41.409622 \ldots) \\
& \cong 82.819244 \ldots \\
& \cong 82.82^{\circ}
\end{aligned}
$$

or
(2) Cosine rule using $\triangle C A B$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \Rightarrow|C B|^{2} \quad=\quad|A C|^{2}+|A B|^{2}-2|A C| .|A B| \cos |\angle C A B| \\
& \Rightarrow \quad(4)^{2} \quad=(4)^{2}+(6)^{2}-2(4)(6) \cos |\angle C A B| \\
& \Rightarrow 16 \quad=16+36-48 \cos |\angle C A B| \\
& \Rightarrow 48 \cos |\angle C A B|=32 \\
& \Rightarrow \quad \cos |\angle C A B|=\frac{36}{48} \\
& =\frac{3}{4} \\
& \Rightarrow \quad|\angle C A B| \quad=\quad \cos ^{-1} 0.75 \\
& =\quad 41 \cdot 409622 \ldots \\
& \begin{array}{rll}
|\angle C A D| & =2|\angle C A B| \\
\Rightarrow \quad|\angle C A D| & = & 2(41.409622 .
\end{array} \\
& =2(41 \cdot 409622 \ldots) \\
& =82 \cdot 819244 \ldots \\
& \cong \quad 82.82^{\circ}
\end{aligned}
$$

Scale 5D* (0, 2, 3, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. draws or indicates on diagram $\triangle C A M$ or $\triangle C A B$
	with correct lengths of sides shown [i.e. hypotenuse, adjacent and relevant angle in method $\mathbf{0} ;$ sides a, b, c and relevant angle in method $\mathbf{Q}]$.	
	-	Some correct substitution into trigonometric ratio or cosine rule, but fails to finish or finishes incorrectly.
	-	Finds $\|C M\|[$ ans. $\sqrt{7}]$.

Question 6 (cont'd.)

6(a) (i) (cont'd.)

| High partial credit: (4 marks) | $-\quad$ Finds $\|\angle C A M\|=41 \cdot 409622 \ldots{ }^{\circ}$ or $41 \cdot 41^{\circ}$ |
| :--- | :--- | :--- |
| | $[$ method $\mathbf{(1)}$ or $\mathbf{2}]$, but fails to find or finds |
| | incorrect $\|\angle C A D\|$. |

* Deduct 1 mark off correct answer only if $\mathbf{(1}$ not rounded or incorrectly rounded or $\mathbf{2}$ for the omission of or incorrect use of units ('‘’) - apply only once in each section (a), (b), (c), etc. of question.
(ii) Hence, find the area of the shaded region, correct to one decimal place.
(10D*)

$$
\begin{aligned}
\text { Area of the shaded region } & =2 \times[\text { Area of sector } A D C-\text { area of } \triangle A D C] \\
\text { area of sector } & =\frac{\theta}{360} \pi r^{2} \\
\text { area of triangle } & =\frac{1}{2} a b \sin C \\
\Rightarrow \quad \text { Area of the shaded region } & =2 \times\left[\frac{82 \cdot 82}{360} \pi(4)^{2}-\frac{1}{2}(4)(4) \sin 82 \cdot 82\right] \\
& =2 \times[11 \cdot 563853 \ldots-7 \cdot 937267 \ldots] \\
& =2 \times[3 \cdot 626585 \ldots] \\
& =7 \cdot 253171 \ldots \\
& =7.3 \text { units }^{2}
\end{aligned}
$$

Scale 10D* $(0,4,6,8,10)$

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (4 marks) \& -

- \& | Any relevant first step, e.g. writes down ' $2 \times$ [Area of sector $A D C-$ area of $\triangle A D C]$ ', |
| :--- |
| ' $4 \times$ [Area of sector $C A M$ ' - area of $\triangle C A M$] or similar and stops. |
| Some correct substitution into formula for area of a sector or area of triangle (formula stated or not). |

\hline Mid partial credit: (6 marks) \& - \& Finds correct area of sector $C A D$ or $\triangle C A D$ [or sector $C A M$ or $\triangle C A M$] and stops or continues incorrectly.

\hline High partial credit: (8 marks) \& - \& Finds correct areas of sector $C A D$ and $\triangle C A D$ [or sector $C A M$ and $\triangle C A M$], but fails to finish (multiply by 2 or 4) or finishes incorrectly.

\hline
\end{tabular}

* Deduct 1 mark off correct answer only if $\mathbf{(1}$ not rounded or incorrectly rounded or $\boldsymbol{2}$ for the omission of or incorrect use of units ('units ${ }^{2 \text { ' }}$) - apply only once in each section (a), (b), (c), etc. of question.

6(b) In the diagram, [$C D$] is a median of triangle $A B C$, [$D E$] is a median of triangle $A D C$ and $D E$ is perpendicular to $A C$.
(i) Show that $D B C$ is an isosceles triangle.

(1)		Consider $\triangle A E D$ and $\triangle C E D$		
	\Rightarrow	[$D E$] is a median of $\triangle A D C$		
		$\|A E\|$	$=$	$\|E C\|$
(2)	\Rightarrow	Also $D E \perp A C$		
		\| $\angle A E D$ \|	$=$	\| $\angle C E D$
			$=$	90°
3		Also $\|E D\|=\|E D\|$		
	\Rightarrow	$\triangle A E D$	\equiv	$\triangle C E D$
	\Rightarrow	$\|A D\|$	$=$	\| $D C$ \|
(4)		[CD] is a median of $\triangle A B C$		
	\Rightarrow	$\|A D\|$		$\|D B\|$
	\Rightarrow	Equating (1) and (2): $\|D C\|$	$=$	$\|D B\|$
	\Rightarrow	$\triangle D B C$ is isosceles		

... common side of both triangles
... SAS
\ldots other corresponding sides of $\Delta \mathrm{s}$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down one correct step such as ‘‘ $[D E]$ is a median of $\triangle A D C], \Rightarrow\|A E\|=\|E C\|$ ' and stops.
High partial credit: (4 marks)	-	Shows that $\triangle A E D \equiv \triangle C E D$, i.e. identifies three pairs of corresponding angles or sides correctly (with brief explanations), thereby showing $\triangle A E D$ and $\triangle C E D$ are congruent (must be stated), but fails to finish [step © ©] or finishes incorrectly.

(ii) Given that the area of triangle $E D C$ is 5 square units, find the area of triangle $A B C$. Explain the reasoning for your answer.

Area of $\triangle A D E$	$=5$ units 2
Area of $\triangle A D E \quad$	$=$ Area of $\triangle E D C \quad \ldots$ as $[D E]$ is a median of $\triangle A D C$
	$=5$ units 2
$\Rightarrow \quad$ Area of $\triangle A D C \quad$	$=$ Area of $\triangle A D E+$ Area of $\triangle A D E$
	$=5+5$
	$=10$ units 2
Area of $\triangle D B C \quad$	$=$ Area of $\triangle A D C \quad \ldots$ as $[C D]$ is a median of $\triangle A B C$
	$=10$ units 2
$\Rightarrow \quad$ Area of $\triangle A B C \quad$	$=$ Area of $\triangle A D C+$ Area of $\triangle D B C$
	$=10+10$
	$=20$ units 2

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down 'Area of $\triangle A D E=$ Area of $\triangle E D C$ ' or 'Area of $\triangle E D C=5$ ' and stops. Finds correct answer [ans. 20 units 2], but no justifications given.
High partial credit: (4 marks)		Finds correct answer [ans. 20 units 2], but incomplete justifications given.

Answer all three questions from this section.

Question 7

The diagram below shows two semi-circles of different radii that intersect at the point P.
The larger semi-circle has centre O and radius 4 cm . The smaller semi-circle has centre C and radius 3 cm . The line through the centres, $O C$, intersects the smaller semi-circle at the point S and the larger semi-circle at the points Q and T.

7(a) (i) Name two triangles of equal area in the diagram above and give a reason for your answer.

Any 1:
$\triangle P T O \quad=\quad \triangle P O Q \quad$.. both the perpendicular height and the length of the bases of each triangle (both radii of the semi-circle) are the same
or
$\triangle P O C \quad=\quad \triangle P C S$
... same reason

Scale 5B (0, 2, 5)

Partial credit: (2 marks) - Identifies two triangles of equal area, but no reason or incomplete reason given.
(ii) Using the cosine rule, or otherwise, show that $\cos |\angle O C P|=\frac{1}{9}$.

$$
\begin{array}{rlll}
& a^{2} & = & b^{2}+c^{2}-2 b c \cos A \tag{10C}\\
\Rightarrow \quad|O P|^{2} & & |O C|^{2}+|C P|^{2}-2|O C|| | C P|\cos | \angle O C P \mid \\
\Rightarrow \quad(4)^{2} & & (3)^{2}+(3)^{2}-2(3)(3) \cos |\angle O C P| \\
\Rightarrow 16 & & 9+9-18 \cos |\angle O C P| \\
\Rightarrow 18 \cos |\angle O C P| & & =18-16 \\
\Rightarrow \quad \cos |\angle O C P| & & =\frac{2}{18} \\
\Rightarrow & & \frac{1}{9} \\
\Rightarrow \quad|\angle O C P| & & \cos ^{-1} \frac{1}{9} & O
\end{array}
$$

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correct formula for cosine rule with some correct substitution, but fails to finish or finishes incorrectly.
High partial credit: $(7$ marks $)$	-	Fully correct substitution into formula for cosine rule, i.e. $(4)^{2}=(3)^{2}+(3)^{2}$
	$-2(3)(3) \cos \|\angle O C P\|$, but fails to finish or finishes incorrectly.	

Question 7 (cont'd.)

7(a) (cont'd.)
(iii) Hence, show that $\sin |\angle O C P|=\frac{4 \sqrt{5}}{9}$.

$$
\begin{equation*}
\cos |\angle O C P| \quad=\quad \frac{1}{9} \tag{5C}
\end{equation*}
$$

Using Pythagoras' theorem:

$$
\begin{aligned}
|\mathrm{Hyp}|^{2} & =|\mathrm{Opp}|^{2}+|\mathrm{Adj}|^{2} \\
\Rightarrow \quad(9)^{2} & \\
\Rightarrow|\mathrm{Opp}|^{2} & \\
& =81-1 \\
\Rightarrow \quad|\mathrm{Opp}| & =80 \\
& =\sqrt{80} \\
\sin |\angle O C P| & \\
& =\frac{|\mathrm{Opp}|}{|\mathrm{Hyp}|} \\
& =\frac{4 \sqrt{5}}{9}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

| Low partial credit: (2 marks) | - - | Any relevant first step, e.g. draws rightangle triangle with lengths of hypotenuse and adjacent marked.
 Some correct use of Pythagoras' theorem, but fails to find \|Opp |. |
| :---: | :---: | :---: |
| High partial credit: (4 marks) | - | Finds correct $\|O p p\|$, [ans. $\sqrt{80}$ or $4 \sqrt{5}]$, but fails to show that $\sin \|\angle O C P\|=\frac{4 \sqrt{5}}{9}$. |

7(b) (i) Find the area of triangle $O C P$, giving your answer in surd form.

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2} a b \sin C \\
\Rightarrow \quad \text { Area of } \triangle O C P & =\frac{1}{2}|O C| \cdot|C P| a b \sin |\angle O C P| \\
& =\frac{1}{2}(3)(3) \frac{4 \sqrt{5}}{9} \\
& =2 \sqrt{5} \text { units }^{2}
\end{aligned}
$$

Scale 5C (0, 2, 4, 10)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for the area of a triangle with some correct substitution, but fails to finish or finishes incorrectly.
High partial credit: (4 marks)	$-\quad$ Fully correct substitution into formula,	
	i.e. area of $\triangle O C P=\frac{1}{2}(3)(3) \frac{4 \sqrt{5}}{9}$, but fails to give final answer in surd form.	

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('units') - apply only once in each section (a), (b), (c), etc. of question.

7(b) (cont'd.)
(ii) Calculate the areas of the two sectors $O C P$ and $P O Q$. Give your answers correct to two decimal places.

$$
\text { Area of sector } \quad=\quad \frac{\theta}{360} \pi r^{2}
$$

(1) Sector $O C P$

$$
\begin{aligned}
\cos |\angle O C P| & =\frac{1}{9} \\
\Rightarrow \quad|\angle O C P| & =\cos ^{-1} \frac{1}{9} \\
& =\cos ^{-1} 0 \cdot 111111 \ldots \\
& =83 \cdot 620629 \ldots \\
\Rightarrow \quad \text { Area of sector } O C P & =\frac{83 \cdot 620629 \ldots}{360} \pi(3)^{2} \\
& =6 \cdot 567548 \ldots \\
& \cong 6 \cdot 57 \text { units }^{2}
\end{aligned}
$$

... given in part (a)(ii)

$$
\text { (1) } \begin{aligned}
\begin{array}{l}
\text { Sector } P O Q \\
\text { Consider } \triangle P O C
\end{array} \\
|O C|
\end{aligned} \quad=|C P|
$$

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correct formula for the area of a sector with some correct substitution, but fails to finish or finishes incorrectly.
	-	Finds correct value for $\|\angle O C P\| \underline{\text { and stops }}$ or continues incorrectly.
Mid partial credit: (6 marks)	-	Fully correct substitution into area formula for sector $O C P($ evaluated or not) i.e. area of $O C P=\frac{83 \cdot 620629 \ldots}{360} \pi(3)^{2}$.
High partial credit: (8 marks)	-	Finds correct area of sector $O C P$ and finds correct $\|\angle P O C\|$, but fails to find area of sector $P O Q$ or finds incorrect area.
	-	Finds correct area of sector $O C P$ and some correct substitution into formula for area of sector $O C P($ no value or incorrect value for $\|\angle P O C\|$ found).

* Deduct 1 mark off correct answer only if $\mathbf{(}$ not rounded or incorrectly rounded or 2 for the omission of or incorrect use of units ('units ${ }^{2}$) - apply only once in each section (a), (b), (c), etc. of question.

7(b) (cont'd.)
(iii) Hence, find the area of the shaded region, correct to one decimal place.

** Accept students' answers from parts (b)(i) and (b)(ii) if not oversimplified.
Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. finds correct area of semi-circle or circle with correct
		radius (3 units).
	-	Finds correct area of $P C Q$ and stops.
	Finds correct area of sector $P C S$ and stops.	

* Deduct 1 mark off correct answer only if $\mathbf{(1}$ not rounded $\frac{\underline{\text { or }}}{2}$ incorrectly rounded or $\boldsymbol{2}$ for the omission of or incorrect use of units ('units') - apply only once in each section (a), (b), (c), etc. of question.

7(c) Find the perimeter of the shaded region, correct to one decimal place.

$$
\begin{aligned}
& \text { Perimeter of shaded region } \\
& =\quad|\operatorname{arc} P Q|+|\operatorname{arc} P S|+|Q S| \\
& |\operatorname{arc} P Q| \quad=\quad \frac{48 \cdot 189685 \ldots}{360}(2 \pi)(4) \quad \ldots \text { answer from part }(\mathrm{b})(\mathrm{ii}) \\
& =3 \cdot 364274 \ldots \\
& |\operatorname{arc} P S| \quad=\quad \frac{96 \cdot 379370 \ldots}{360}(2 \pi)(3) \quad \ldots \text { answer from part (b)(iii) } \\
& =5 \cdot 047162 \ldots \\
& |Q S|=|O S|-|O Q| \\
& =\quad 2|O C|-|O Q| \\
& =2(3)-4 \\
& =2 \\
& \Rightarrow \quad \text { Perimeter of shaded region } \\
& =3 \cdot 364274 \ldots+5 \cdot 047162 \ldots+2 \\
& =10 \cdot 411436 \ldots \\
& \cong \quad 10 \cdot 4 \text { units }
\end{aligned}
$$

** Accept students' answers from parts (b)(ii) and (b)(iii) if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10)
$\left.\begin{array}{|lll|}\hline \text { Low partial credit: (4 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. writes down } \\ \text { correct formula for the length of arc with } \\ \text { some correct substitution to find one arc, }\end{array} \\ \text { but fails to finish or finishes incorrectly. }\end{array}\right\}$

* Deduct 1 mark off correct answer only if $\mathbf{(1}$ not rounded or incorrectly rounded or 2 for the omission of or incorrect use of units ('units ${ }^{2}$) - apply only once in each section (a), (b), (c), etc. of question.

8(a) Figures on the numbers of people passing their driving test are published annually. On analysis of the data, a researcher found that the probability of a person passing his/her test in a particular test centre on the first attempt was $\frac{2}{3}$. Six individuals take their driving test for the first time.

(i) Find the probability that at least one of the individuals passes the test.

$$
\begin{aligned}
\frac{\text { Bernoulli trial }}{p \text { (probability of success) }} & =\frac{2}{3} \\
\Rightarrow \quad q \text { (probability of failure) } & =1-\frac{2}{3} \\
& =\frac{1}{3} \\
n \text { (number of individuals) } & =6 \\
P(k) & =\binom{n}{k} p^{k} q^{n-k} \\
P(\text { at least one passes }) & =1-P(\text { no individual passes }) \\
& =1-\binom{6}{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{6} \\
& =1-(1)(1)\left(\frac{1}{3}\right)^{6} \\
& =1-\frac{1}{729} \\
& =\frac{728}{729} \underline{\text { or }} 0.998628 \ldots
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down explanation, i.e. $P($ at least one passes)
	$=1-P($ no individual passes) and stops.	

8(a) (cont'd.)
(ii) Find the probability that at most four individuals pass the test.

$$
\begin{aligned}
P(\text { at most four pass }) & =1-[P(\text { five pass })+P(\text { six pass })] \\
& \left.=1-\left[\begin{array}{l}
6 \\
5
\end{array}\right)\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{1}+\binom{6}{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{0}\right] \\
& =1-\left[6\left(\frac{32}{243}\right)\left(\frac{1}{3}\right)+1\left(\frac{64}{729}\right)(1)\right] \\
& =1-\left[\frac{192}{729}+\frac{64}{729}\right] \\
& =1-\frac{256}{729} \\
& =\frac{473}{729} \text { or } 0.648834 \ldots
\end{aligned}
$$

Scale 10C (0, 4, 7, 10)
Low partial credit: (4 marks) - Any relevant first step, e.g. writes down correct explanation, i.e. P (at most four pass) $=1-[P($ five pass $)+P($ six pass $)]$ and stops.

- Some correct substitution into binomial formula, and stops or continues incorrectly,
e.g. $\binom{6}{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{1}$ or $\binom{6}{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{0}$.

High partial credit: (7 marks) - Fully correct substitution into binomial formula, but fails to evaluate correctly,
i.e. $1-\left[6\left(\frac{32}{243}\right)\left(\frac{1}{3}\right)+1\left(\frac{64}{729}\right)(1)\right]$.

8(b) A reputable driving school claims on its website that 80% of its students pass their driving test on their first attempt. In order to test this claim, a sample of 900 people who used the school and who had taken their test for the first time are chosen at random. The number of people who passed the driving test on their first attempt was 675.
(i) Conduct a hypothesis test at the 5% level of significance to decide whether there is sufficient evidence to justify the driving school's claim. Write the null hypothesis and the alternative hypothesis and state your conclusion clearly.
(1) $H_{0}: p=0 \cdot 8 \quad-\quad$ percentage of students who used the driving school $H_{1}: p \neq 0 \cdot 8 \quad-\quad$ percentage of students who used the driving school passed their driving test on their first attempt is not 80%
(2) A confidence interval for a population proportion, p, is

$$
\begin{aligned}
& =\left[\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \\
\hat{p} \quad & =\frac{675}{900} \\
& =0.75
\end{aligned}
$$

At 95\% confidence interval

$$
z \text {-value } \quad=1.96
$$

$\Rightarrow \quad$ The 95% confidence interval for this population proportion, p, is

$$
\begin{aligned}
& =\quad\left[0.75-1.96 \sqrt{\frac{0.75(1-0.75)}{900}}, 0.75+1.96 \sqrt{\frac{0.75(1-0.75)}{900}}\right] \\
& =[0.75-0.028290 \cdot \cdot 0.75-0.028290] \\
& =[0.72171, \cdot 0.77829]
\end{aligned}
$$

(3) Conclusion

As $p=0.8$ is outside this interval, the result is significant.
There is evidence to reject the null hypothesis $\left(H_{0}\right)$ and accept the alternative hypothesis $\left(H_{1}\right)$, i.e. the percentage of students who took the driving test for the first time and who passed the test is not 80%

Scale 15D (0, 6, 10, 13, 15)

Low partial credit: (6 marks)	- - -	Any relevant first step, e.g. writes down null hypothesis and/or alternative hypothesis only. Finds correct value for observed population, \hat{p} and stops. Mention of 5% level of significance and therefore comparing to z-value of $\pm 1 \cdot 96$.
Mid partial credit: (10 marks)	-	Finds correct value for \hat{p} and some correct substitution into 95% confidence interval for population proportion.
High partial credit: (13 marks)	-	Finds correct confidence interval and compares to correctly calculated value for \hat{p} but: - fails to state the null and/or alternative hypothesis correctly, - fails to accept or rejecting hypothesis. - fails to contextualise answer properly. i.e. stops at rejects null hypothesis.

8(b) (cont'd.)
(ii) Find, using a 5% level of significance, the least number of people in that sample required to have passed the driving test in order to accept the driving school's claim.

$$
\begin{equation*}
\hat{p} \quad=0.8 \tag{5C}
\end{equation*}
$$

95% confidence interval for the population proportion, p, to accept the driving school's claim, is

$$
\begin{aligned}
& =\quad\left[0 \cdot 80-1 \cdot 96 \sqrt{\frac{0 \cdot 8(1-0 \cdot 8)}{900}},+1 \cdot 96 \sqrt{\frac{0 \cdot 8(1-0 \cdot 8)}{900}}\right] \\
& =\quad[0 \cdot 80-0 \cdot 026133,0 \cdot 80-0 \cdot 026133] \\
& =[0 \cdot 773867,0 \cdot 826133]
\end{aligned}
$$

$\Rightarrow \quad$ Least number of people in sample

$$
\begin{aligned}
& =\quad 0.773867 \times 900 \\
& =\quad 696.4803 \\
& \cong \quad 697 \text { people }
\end{aligned}
$$

* Accept either 696 or 697 as correct final answer.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. formulates confidence interval with some correct substitution.
High partial credit: (4 marks)	-	Finds correct confidence interval, but fails to find or finds incorrect least number of people in sample.

8(c) In a random sample of 200 drivers from all parts of the country, the 95% confidence interval for the mean number of penalty points received was $4 \cdot 1921 \leq \mu \leq 4 \cdot 6079$.
(i) Assuming that the number of penalty points received follows a normal distribution, find the standard deviation of this sample.
(1) 95% confidence interval for the population mean:

$$
\begin{aligned}
& \bar{x}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+1.96 \frac{\sigma}{\sqrt{n}} \\
& \Rightarrow \quad \bar{x}-1.96 \frac{\sigma}{\sqrt{n}} \quad=\quad 4.1921 \\
& \text { and } \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}=4.6079 \\
& \Rightarrow \quad \overline{2 \bar{x}} \quad=\quad 8 \cdot 8 \\
& \Rightarrow \quad \bar{x} \quad=\quad 4.4 \\
& \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}=4.6079 \\
& \Rightarrow \quad 4.4+1.96 \frac{\sigma}{\sqrt{n}}=4.6079 \\
& \Rightarrow \quad 1.96 \frac{\sigma}{\sqrt{n}} \quad=\quad 4.6079-4.4 \\
& \Rightarrow \quad \frac{\sigma}{\sqrt{200}} \quad=\quad \frac{0.2079}{1.96} \\
& \Rightarrow \quad \sigma \quad=\quad \sqrt{200}(0 \cdot 106071 \ldots) \\
& =1 \cdot 500076 \ldots \\
& \cong \quad 1.5
\end{aligned}
$$

Question 8 (cont'd.)

8(c) (i) (cont'd.)
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. formulates confidence interval for population mean,				
		i.e. $\bar{x}-1 \cdot 96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+1 \cdot 96 \frac{\sigma}{\sqrt{n}}$.				
	-	Formulates two simultaneous equations				
in terms of \bar{x} and $\frac{\sigma}{\sqrt{n}}$.			,			Finds correct value for \bar{x}, but fails to find
:---	:---	:---				
		correct value for $\frac{\sigma}{\sqrt{n}}$.				

(ii) How many drivers in this sample can be expected to have more than 7 penalty points?

$$
\begin{aligned}
& z \quad=\frac{x-\bar{x}}{\sigma} \\
& x \quad=7 \\
& \bar{x} \quad=\quad 4 \cdot 4 \\
& \sigma \quad=1.5 \\
& \Rightarrow \quad P(x>7) \quad=\quad P\left(z>\frac{7-4.4}{1.5}\right) \\
& =\quad P(z>1.7333) \\
& \cong \quad P(z>1.73) \\
& =\quad 1-P(z<1 \cdot 73) \\
& =1-0.9582 \quad \ldots \text { from } z \text {-tables } \\
& =0.0418 \\
& \Rightarrow \quad \text { \#drivers expected to have more than } 7 \text { penalty points } \\
& =\quad 200 \times 0.0418 \\
& =8.36 \\
& \cong \quad 9 \text { drivers } \\
& \text { ** Accept students' answers from part (c)(i) if not oversimplified. }
\end{aligned}
$$

Scale 5D (0, 2, 3, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for z with some correct substitution into formula.
	-	Finds correct value for z, but fails to find \underline{z}-value from tables.
Mid partial credit: (3 marks)	-	Finds correct $P(z<1 \cdot 73)$ [ans. $0 \cdot 9582]$, but fails to finish or finishes incorrectly.
High partial credit: (4 marks)	-	Finds correct probability, i.e. $P(x>7)$ [ans. $0 \cdot 0418]$, but fails to find or finds incorrect expected \#driver.

9(a) (i) Construct the incircle of the triangle $A B C$ below using only a compass and a straight edge. Show all construction lines clearly.

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. construct one bisector correctly. Draws circle by trial and error, but within tolerance of 2 mm.
High partial credit: (7 marks)	-	Finds incentre correctly, but fails to draw incircle.
	-	Draws incircle correctly using method shown, but outside tolerance of 2 mm.

(ii) On the diagram above, mark the point O, the centre of the incircle, and the perpendicular distance from O to $[A B], r$, the radius of the incircle.

- see diagram above
(iii) Let $|A B|=c,|B C|=a$ and $|A C|=b$.

Find an expression for the area of triangle $A B O$, in terms of r and one of these constants.

$$
\begin{aligned}
\text { Area of } \triangle A B O & =\frac{1}{2}(\text { base } \times \perp \text { height }) \\
& =\frac{1}{2}(c \times r) \\
& =\frac{c r}{2}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for area of a triangle.
	-	Shows centre O and radius r correctly on diagram.
	-	Some correct substitution into formula for area of a triangle (not stated),
	e.g. $\frac{1}{2} \times\|A B\| \times r \underline{\text { or } \frac{1}{2} \times c \times h .}$	
High partial credit: (4 marks)	-	Shows centre O and radius r correctly on diagram $\underline{\text { and finds area of triangle }}$ as $\frac{1}{2} \times\|A B\| \times r \underline{\text { or }} \frac{1}{2} \times c \times h$.

9(a) (cont'd.)
(iv) Hence, or otherwise, show that, if p is the length of the perimeter of triangle $A B C$, the area of triangle $A B C$ is equal to $\frac{1}{2} p r$.

Area of $\triangle A B C=$ Area of $\triangle A B O+$ Area of $\triangle B C O+$ Area of $\triangle C A O$
Area of $\triangle A B O=\frac{c r}{2}$
Similarly
Area of $\triangle B C O=\frac{a r}{2}$
Area of $\triangle A B O=\frac{b r}{2}$

$\Rightarrow \quad$ Area of $\triangle A B C=\frac{c r}{2}+\frac{a r}{2}+\frac{b r}{2}$
$=\quad \frac{r}{2}(a+b+c)$
$=\frac{1}{2} p r$
Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down 'Area of $\triangle A B C=$ Area of $\triangle A B O+$ Area of $\triangle B C O+$ Area of $\triangle C A O$ ' or equiavlent. Writes down perimeter, $p=a+b+c$. Finds correct area of $\triangle B C O$ or $\triangle A B O$, i.e. Area $\triangle B C O=\frac{a r}{2}$ or Area $\triangle A B O=\frac{b r}{2}$, and stops or continues incorrectly.
High partial credit: (7 marks)	-	Adds areas of all three smaller triangles, i.e. Area of $\triangle A B C=\frac{c r}{2}+\frac{a r}{2}+\frac{b r}{2}$, but fails to finish or finishes incorrectly.

9(b) A wheel of radius 3 units rests against a vertical wall of height 15 units. A straight thin board leans against the wheel with one end of the board touching the top of the wall, M, and the other end resting on the ground, N, as shown.
Using the result from part (a)(iv) above, or otherwise, find $|N L|$, the distance from the bottom of the board to the foot of the wall. [Hint: Let $x=|N L|$ and find $|M N|$ in terms of x.]

Let $x=|N L|$
(1) Using area formula:

$$
\begin{array}{rlll}
& \text { Area of } \Delta & = & \frac{1}{2}(\text { base } \times \perp \text { height }) \\
\Rightarrow & \text { Area of } \Delta N L M & = & \frac{1}{2}(x)(15)
\end{array}
$$

(2) Using Pythagoras' theorem

\[

\]

$3 \quad$ Using result from part (a)(iv):

$$
\begin{array}{rlrl}
& \text { Area of } \Delta \\
\Rightarrow \quad & =\quad \frac{1}{2} p r \\
& \text { Area of } \triangle N L M & = & \frac{1}{2}\left(x+15+\sqrt{x^{2}+225}\right)(3)
\end{array}
$$

(1)

Equating (1) and (2):

$$
\begin{array}{lll}
& \frac{1}{2}(x)(15) & = \\
\Rightarrow & = & \frac{1}{2}\left(x+15+\sqrt{x^{2}+225}\right)(3) \\
\Rightarrow & 5 x & = \\
\Rightarrow & 4 x-15 & \sqrt{x^{2}+225} \\
\Rightarrow & (4 x-15)^{2} & x^{2}+225 \\
\Rightarrow & 16 x^{2}-120 x+225 & = \\
x^{2}+225 \\
\Rightarrow & 15 x^{2}-120 x & = \\
\Rightarrow & x^{2}-8 x & = \\
\Rightarrow & x(x-8) & = \\
\Rightarrow & x-8 & = \\
\Rightarrow & x & = \\
\Rightarrow & |N L| & = \\
\Rightarrow & & 8 \\
\Rightarrow & \text { units }
\end{array}
$$

Scale 15D (0, 6, 10, 13, 15) Low partial credit: (6 marks) - Any relevant first step, e.g. finds, using Pythagoras' theorem, $|M N|^{2}=x^{2}+15^{2}$ or $|M N|=\sqrt{x^{2}+225}$ and stops.

- Finds Area of $\Delta N L M=\frac{1}{2}(x)(15)$ and stops or continues incorrectly.

High partial credit: (10 marks)	-	Finds $\frac{1}{2} p r=\frac{1}{2}\left(x+15+\sqrt{x^{2}+225}\right)$
		$\underline{\text { and stops } \text { or continues incorrectly. }}$
	-	Finds $p=x+15+\sqrt{x^{2}+225}$
	$\underline{\text { and Area of } \Delta N L M=\frac{1}{2}(x)(15), \text { and stops }}$	
	$\underline{\text { or continues incorrectly. }}$	
High partial credit: (13 marks)	-	Equates both expressions for area,
	i.e. $\frac{1}{2}(x)(15)=\frac{1}{2}\left(x+15+\sqrt{x^{2}+225}\right)(3)$,	

* No deduction applied for the omission of or incorrect use of units ('units').

9(c) Another wheel rests on the ground, touching the board [$M N$]. A second straight thin board [MQ] leans against this wheel with one end touching the top of the wall, M, and the other end resting on the ground, Q, a distance of 12 units further away from the wall than N, as shown.

Find, by calculation, the radius of this wheel.
(1) Using Pythagoras' theorem

$$
\begin{array}{rll}
& |M N|^{2} & =|N L|^{2}+|L M|^{2} \\
\Rightarrow \quad|M N|^{2} & & 8^{2}+15^{2} \\
& =64+225 \\
& & =289 \\
\Rightarrow \quad|M N| & & \sqrt{289} \\
& & =17 \text { units }
\end{array}
$$

(2) Using Pythagoras' theorem

$$
\begin{aligned}
& \Rightarrow \quad|Q M|^{2} \\
& \begin{array}{l}
=\quad(|Q N|+|N L|)^{2}+|L M|^{2} \\
=\quad(12+8)^{2}+15^{2}
\end{array} \\
& =400+225 \\
& \begin{array}{rll}
& = & 625 \\
\Rightarrow \quad|Q M| & = & \sqrt{625}
\end{array} \\
& =\quad 25 \text { units }
\end{aligned}
$$

3 Perimeter of $\triangle Q N M$

$$
\begin{array}{lll}
p & = & 12+17+25 \\
& =54 \text { units }
\end{array}
$$

(4) Using area formula:

$$
\begin{aligned}
\text { Area of } \triangle Q N M & =\frac{1}{2}(12)(15) \\
& =90 u_{n i t s}
\end{aligned}
$$

© \quad Using result from part (a)(iv):

$$
\begin{array}{rlrl}
& \text { Area of } \Delta & & \frac{1}{2} p r \\
\Rightarrow \quad \text { Area of } \triangle Q N M & = & \frac{1}{2}(54) r \\
\Rightarrow \quad \frac{1}{2}(54) r & & =90 \\
\Rightarrow \quad & r & =\frac{90}{27} \\
& & & \frac{10}{3} \text { units }
\end{array}
$$

9(c) (cont'd.)

Scale 10D (0, 4, 6, 8, 10)	** Accept students' answers from part (b) if not oversimplified.		
	Low partial credit: (4 marks)	-	Any relevant first step, e.g. finds, using Pythagoras' theorem, value for $\|M N\|$ and stops [allow use of students' answers from part (i)]. Finds correct Area of $\triangle Q N M$ and stops or continues incorrectly.
	High partial credit: (6 marks)	-	Finds correct values of $\|M N\|$ and $\|Q M\|$ and stops or continues incorrectly. Finds correct value of $\|M N\|$ and correct Area of $\triangle Q N M$ and stops or continues incorrectly.
	High partial credit: (8 marks)	-	Finds correct perimeter of $\triangle Q N M$ [ans. 54] and Area of $\triangle Q N M$ [ans. 90], but fails to finish or finishes incorrectly.

* No deduction applied for the omission of or incorrect use of units ('units').

Download our past exam papers and solutions. Register today on www.debexams.ie

www-debexams.ie Tel: (01) 6166262 Email: info@debexams.ie

[^0]: * Note: If arithmetic error only, award 9 marks.
 * Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m/s') - apply only once in each section (a), (b), (c), etc. of question.

[^1]: * Deduct 1 mark off correct answer only $\mathbf{1}$ if final answer(s) are not rounded or incorrectly rounded or $\mathbf{2}$ for the omission of or incorrect use of units (' m ') - apply only once to each section (a), (b), (c), etc. of question.

