

e = m(

Pre-Leaving Certificate Examination, 2017

Mathematics Higher Level

Marking Scheme

Paper 1	Pg. 2
Paper 2	Pg. 42

ExamCentre, Units 3/4, Fonthill Business Park, Fonthill Road, Dublin 22, D22 V348.

Tel: (01) 616 62 62 Fax: (01) 616 62 63 www.debexams.ie

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level – Paper 1 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.

These scales and the marks that they generate are summarised in the following table:

Scale label	Α	В	С	D
No. of categories	2	3	4	5
5 mark scale		0, 2, 5	0, 2, 4, 5	0, 2, 3, 4, 5
10 mark scale			0, 4, 7, 10	0, 4, 6, 8, 10
15 mark scale				0, 6, 10, 13, 15

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving ① incorrect rounding, ② omission of units, ③ a misreading that does not oversimplify the work <u>or</u> ③ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale 10C* indicates that 9 marks may be awarded.

Thus, for example, scale for indicates that γ marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only **within each section (a), (b), (c),** etc. of all questions.
- The * penalty is not applied to currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.

Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Q.1	(a) (b)		5C (0, 2, 4, 5) 10D* (0, 4, 6, 8, 10)		Q.7	(a) (b)		5C (0, 2, 4, 5) 10D (0, 4, 6, 8, 10)	
	(c)		10D (0, 4, 6, 8, 10)	25		(c)	(i) (ii) (iii)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5) 5C (0, 2, 4, 5)	
Q.2	(a) (b)	(i) (ii)	10D (0, 4, 6, 8, 10) 10D (0, 4, 6, 8, 10) 5C (0, 2, 4, 5)			(d) (e)	(i) (ii)	10D (0, 4, 6, 8, 10) 5C (0, 2, 4, 5) 5C (0, 2, 4, 5)	50
		(II)	<u> </u>	25					30
Q.3	(a) (b)	(i)	15D (0, 6, 10, 13, 15) 5C (0, 2, 4, 5)		Q.8	(a)	(i) (ii)	5B (0, 2, 5) 5C (0, 2, 4, 5)	
		(ii)	5D (0, 2, 3, 4, 5)	25		(b)	(i) (ii)	15D* (0, 4, 6, 8, 10) 10D* (0, 4, 6, 8, 10) 10D (0, 4, 6, 8, 10)	
Q.4		(i)	5C (0, 2, 4, 5)			(c)	(i) (ii)	10D (0, 4, 6, 8, 10) 5D* (0, 2, 3, 4, 5)	50
Q.4	(a) (b)	(i) (ii) (i)	5B (0, 2, 5) 10D (0, 4, 6, 8, 10)						30
		(ii)	5C (0, 2, 4, 5)	25	Q.9	(a)	(i)	10D* (0, 4, 6, 8, 10)	
Q.5	(a)	(i)	10D* (0, 4, 6, 8, 10)			(b)	(ii) (i) (ii)	10D* (0, 4, 6, 8, 10) 5C (0, 2, 4, 5) 5C* (0, 2, 4, 5)	
	(b)	(ii)	5C* (0, 2, 4, 5) 10D (0, 4, 6, 8, 10)	25		(c)	(iii)	10D* (0, 4, 6, 8, 10) 10D* (0, 4, 6, 8, 10)	50
				25					50
Q.6	(a)	(i) (ii)	5C* (0, 2, 4, 5) 10D* (0, 4, 6, 8, 10)						
	(b)		10D* (0, 4, 6, 8, 10)						

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

25

Answer all questions.

Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Answers should be given in simplest form, where relevant.

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level – Paper 1 Marking Scheme (300 marks)

Section A	Concepts and Skills	150 marks
Answer all six questions from this section.		

Question 1

1(a) Simplify fully.

$\frac{x^2 - 9}{2x^2 - 11x + 13}$	$\frac{1}{5} \div \frac{x^2 + 3x}{4x^3 - 10x^2}$	(5C)
$\frac{x^2 - 9}{2x^2 - 11x + 15}$	$\frac{x^2 + 3x}{5} \div \frac{x^2 + 3x}{4x^3 - 10x^2} = \frac{x^2 - 9}{2x^2 - 11x + 15} \times \frac{4x^3 - 10x^2}{x^2 + 3x}$ $= \frac{(x - 3)(x + 3)}{(2x - 5)(x - 3)} \times \frac{2x^2(2x - 5)}{x(x + 3)}$ $= \frac{2x^2}{x}$ $= 2x$	
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks) – Any relevant first step, <i>e.g.</i> invocint correctly second fraction and division to multiplication. – Some correct factorising, <i>e.g.</i> $x^2 - 9 = (x - 3)(x + 3)$.	
	High partial credit: (4 marks)-Both fractions fully factorised (with second fraction inverted division changed to multiplica $i.e. \frac{(x-3)(x+3)}{(2x-5)(x-3)} \times \frac{2x^2(2x)}{x(x+3)}$	l and ation),
	or equivalent, but fails to simplest form.	olify to

(25 marks)

1(b) Find the range of values of x for which

$\frac{3x-2}{x-5} \le 5,$	where $x \in \mathbb{R}$ and x	≠ 5.		(10D*)
	$\frac{3x-2}{x-5}$	\leq	5	
	$\frac{3x-2}{x-5} \times (x-5)^2$			
\Rightarrow	(3x-2)(x-5) 3x2-17x+10 3x2-17x+10 2x2-33x+115	\leq	$5(x-5)^2$	
\Rightarrow	$3x^2 - 17x + 10$	\leq	$5(x^2 - 10x + 25)$	
\Rightarrow	$3x^2 - 17x + 10$	\leq	$5x^2 - 50x + 125$	
\Rightarrow	$2x^2 - 33x + 115$	\geq	0	
\Rightarrow	(2x-23)(x-5)	\geq	0	
	Consider:			
	(2x-23)(x-5) 2x-23	=	0	$\uparrow v $ /
\Rightarrow	2x - 23	=	0 0	
\Rightarrow	x	=	$\frac{23}{2}$	
and	<i>x</i> – 5	=	0	
\Rightarrow	x	=	5	5 $\frac{23}{2}$
	$2x^2 - 33x + 115$	≥	0	2
\Rightarrow	x	≥	$\frac{23}{2}$	1
\Rightarrow	x	<	5 as $x \neq 5$	

Scale	10D*	(0.	4.	6.	8.	10)	
Scale	1010	109		υ,	υ,	101	

)	Low partial credit: (4 marks)		Any relevant correct step, <i>e.g.</i> multiplies both sides by $(x - 5)^2$. Finds particular values of <i>x</i> for which the inequality is true. Some correct use of quadratic formula.
	Mid partial credit: (6 marks)	_	Solves the relevant quadratic equation to find the roots, $x = 5 \text{ and } x = \frac{23}{2}$.
	High partial credit: (8marks)		Wrong shape to graph, but otherwise correct. Deduces incorrectly using correct values of x. Deduces correctly for one case only, <i>i.e.</i> $x < 5$ or $x \ge \frac{23}{2}$. Solution set shown on graph only.

* If solution is given as $x \le 5$ and $x \ge \frac{23}{2}$, award 9 marks.

(10D)

1(c) Prove that the equation $px^2 - (2p + 1)x + 2 = 0$ has real roots for all values of $p \in \mathbb{R}$ and hence, or otherwise, write down the roots of the equation in terms of p.

$$px^{2} - (2p + 1)x + 2 = 0$$
Real roots:

$$\Rightarrow b^{2} - 4ac \geq 0$$
Consider:

$$b^{2} - 4ac = [-(2p + 1)]^{2} - 4(p)(2)$$

$$= 4p^{2} + 4p + 1 - 8p$$

$$= 4p^{2} - 4p + 1$$

$$= (2p - 1)^{2}$$

$$\geq 0 \text{ for all } p \in \mathbb{R}$$

 $\Rightarrow \qquad px^2 - (2p+1)x + 2 = 0 \text{ has real roots for all values of } p \in \mathbb{R}$

Roots:

	x	=	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	x	=	$\frac{2p+1\pm\sqrt{(2p-1)^2}}{2p}$
		=	$\frac{2p+1\pm(2p-1)}{2p}$
\Rightarrow	x	=	$\frac{2p+1+(2p-1)}{2p}$
		=	$\frac{4p}{2p}$
		=	2
and	x	=	$\frac{2p+1-(2p-1)}{2p}$
		=	$\frac{2}{2p}$
		=	$\frac{1}{p}$

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $b^2 - 4ac \ge 0$ Some correct substitution into correct '-b' formula <u>and stops or</u> continues incorrectly.
Mid partial credit: (6 marks)	_	Proves that roots are real for $p \in \mathbb{R}$ and stops. Finds both roots (not proving roots are real) and stops. Finds $b^2 - 4ac$ correctly, but fails to finish and fully correct substitution in quadratic formula.
High partial credit: (8 marks)	_	Proves roots are real for $p \in \mathbb{R}$ and correct substitution in quadratic formula, but not fully simplified.

Scale 10D (0, 4, 6, 8, 10)

(25 marks)

(10D)

2(a) Given that $4z - 3\overline{z} = \frac{1 - 18i}{2 - i}$, express z in the form a + bi, where $a, b \in \mathbb{R}$ and $i^2 = -1$.

_	Let $\frac{z}{\overline{z}}$	=	a + bi a - bi
\Rightarrow	Z	—	
\Rightarrow	4(a+bi) - 3(a-bi)	=	$\frac{1-18i}{2-i} \times \frac{2+i}{2+i}$
\Rightarrow	4a + 4bi - 3a + 3bi	=	$\frac{2+i-36i-18i^2}{5}$
		=	$\frac{20-35i}{5}$
\Rightarrow	a + 7bi	=	4 - 7i
\Rightarrow	а	=	4
and	7b	=	-7
\Rightarrow	b	=	-1
\Rightarrow	Ζ	=	4-i

Scale 10D (0, 4, 6, 8, 10)

, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\overline{z} = a - bi \text{ or multiplies } \frac{1 - 18i}{2 - i} \text{ by } \frac{2 + i}{2 + i}.$
	Medium partial credit: (6 marks)	_	Simplifies fully $4z - 3\overline{z}$ to $a + 7bi$ or $\frac{1-18i}{2-i}$ to $\frac{20-35i}{5}$ and stops or continues incorrectly.
	High partial credit: (8 marks)	-	Simplifies both sides fully, <i>i.e.</i> $a + 7bi = \frac{20 - 35i}{5}$, but only one value (<i>a</i> or <i>b</i>) correct.

(10D)

2(b) The complex number w has modulus $3\frac{3}{8}$ and argument $\frac{2\pi}{3}$.

(i) Use De Moivre's Theorem to find, in polar form, the three complex cube roots of w. (That is, find the three values of v for which $v^3 = w$.)

$$\Rightarrow \qquad w \qquad = \qquad r(\cos\theta + i\sin\theta) \\ = \qquad 3\frac{3}{8}(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}) \\ = \qquad \frac{27}{8}[\cos(\frac{2\pi}{3} + 2n\pi) + i\sin(\frac{2\pi}{3} + 2n\pi)] \\ \Rightarrow \qquad v \qquad = \qquad \left(\frac{27}{8}\right)^{\frac{1}{3}}[\cos(\frac{2\pi}{3} + 2n\pi) + i\sin(\frac{2\pi}{3} + 2n\pi)]^{\frac{1}{3}} \\ = \qquad \frac{3}{2}[\cos(\frac{2\pi}{9} + \frac{2n\pi}{3}) + i\sin(\frac{2\pi}{9} + \frac{2n\pi}{3})] \\ For n = 0 \\ v_1 \qquad = \qquad \frac{3}{2}[\cos(\frac{2\pi}{9}) + i\sin(\frac{2\pi}{9})] \\ For n = 1 \\ v_2 \qquad = \qquad \frac{3}{2}[\cos(\frac{8\pi}{9}) + i\sin(\frac{8\pi}{9})] \\ For n = 2 \\ v_3 \qquad = \qquad \frac{3}{2}[\cos(\frac{14\pi}{9}) + i\sin(\frac{14\pi}{9})] \end{cases}$$

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $w = r(\cos \theta + i\sin \theta)$ with $r = 3\frac{3}{8}, \theta = \frac{2\pi}{3}$ <u>or</u> $v^3 = 3\frac{3}{8}(\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3})$ <u>and stops</u> .
	Mid partial credit: (6 marks)	_	Correct substitution with manipulation, <i>i.e.</i> $v = \left(\frac{27}{8}\right)^{\frac{1}{3}} \left[\cos\left(\frac{2\pi}{3} + 2n\pi\right) + i\sin\left(\frac{2\pi}{3} + 2n\pi\right)\right]^{\frac{1}{3}}$ and stops or continues incorrectly.
	High partial credit: (8 marks)	_	Finds correct general term for v, but fails to substitute $n = 1, 2, 3$ into expression. <i>i.e.</i> $v = \frac{3}{2} \left[\cos\left(\frac{2\pi}{9} + \frac{2n\pi}{3}\right) + i\sin\left(\frac{2\pi}{9} + \frac{2n\pi}{3}\right) \right]$ and stops. Finds $v_1 = \frac{3}{2} \left[\cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right) \right]$, but fails to find <u>or</u> finds incorrect v_2 and v_2 .

(5C)

2(b) (cont'd.)

- (ii) w is marked on the Argand diagram below.On the same diagram, show your answers to part (i) and hence, write down the equation of the curve on which all three roots lie.
 - <u>Argand diagram</u>

0

Equation of curve

	Curve:	_	circle with centre (0, 0), radius $\frac{3}{2}$
\Rightarrow	$x^2 + y^2$	=	$\frac{9}{4}$
<u>or</u>	$4x^2 + 4y^2$	=	9
	** Accept stud	lents' ar	nswers from part (b)(i) if not oversimp

** Accept students' answers from part (b)(i) if not oversimplified.
** Accept students' answers using other methods to find the roots of v³.

Scale 5C (0, 2, 4, 5)

-	-	
Low partial credit: (2 marks)	_	Plots correctly one root from part (i).
High partial credit: (4 marks)	_	Plots correctly all three roots from part (i). Plots correctly one root <u>and</u> writes down correct equation of the curve.

(25 marks)

3(a)

		(23 mai ks)
One root of the equation $4x^3$	$-8x^2 + kx + 2 = 0$ is $\frac{1}{2}$.	
	2 nence the other roots of the equa	tion. (15D)
	Find the value of k	
	$f(\frac{1}{2}) = 4(\frac{1}{2})^3 - 8(\frac{1}{2})^3$	$(\frac{1}{2})^2 + k(\frac{1}{2}) + 2$
	L L L	
	$=$ $\frac{4}{8} - \frac{8}{4} + \frac{k}{2}$	
	$=$ $\frac{1}{2} - 2 + \frac{k}{2}$	+ 2
	$= \frac{1}{2} + \frac{k}{2}$	
	$= \frac{1}{2} + \frac{1}{2}$ $= 0$	
_	$\frac{1}{1} + \frac{k}{k} = 0$	
<i>→</i>	$\frac{1}{2} + \frac{k}{2} = 0$ k + 1 = 0 k = -1	
\Rightarrow	$\begin{array}{ccc} x+1 & = & 0 \\ x & = & -1 \end{array}$	
	Other roots of equation	
		$-8x^2 - x + 2$
	$x = \frac{1}{2}$ is a root of the equation	
\Rightarrow	(2x-1) is a factor of the equation	n
	Consider	
	$\frac{2x^2 - 3x - 2}{4x^3 - 8x^2 - x + 2}$	
	$\frac{-4x^3+2x^2}{-6x^2-x+2}$	
	$\frac{-6x^2 - x + 2}{+6x^2 - 3x}$	
	$\frac{+4x-2}{0}$	
	$(2x-1)(2x^2-3x-2) =$	0
\Rightarrow	2x-1)(2x+1)(x-2) = 2x+1 =	0 0
\Rightarrow	<i>x</i> =	_1
	2	2
$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	$\begin{array}{ccc} x-2 & = \\ x & = \end{array}$	0 2
Scale 15D (0, 6, 10, 13, 15)	Low partial credit: (6 marks)	- Any relevant correct step, e.g. writes down $f(\frac{1}{2}) = 4(\frac{1}{2})^3 - 8(\frac{1}{2})^2 + k(\frac{1}{2}) + 2$ and stops.
		- Writes down $2x - 1$ is a factor of equation and attempts to divide.

_

_

Mid partial credit: (10 marks)

High partial credit: (13 marks)

Finds correct value for k and some correct

division in dividing 2x - 1 into equation. Finds $2x^2 - 3x - 2$ correctly using division,

but fails to find or finds incorrect roots.

Question 3 (cont'd.)

3(b)	(i) Express $\log_9 xy$ in terms of $\log_3 x$ and $\log_3 y$.				(5C)
			$\log_9 xy$	=	$\log_9 x + \log_9 y$
				=	$\frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$
				=	$\frac{\log_3 x}{2} + \frac{\log_3 y}{2}$
	Scale	5C (0, 2, 4, 5)	Low partial credit: (2 ma	rks)	- Any relevant first step, <i>e.g.</i> writes down $\log_9 xy = \log_9 x + \log_9 y \text{ or } = \frac{\log_3 xy}{\log_3 9}$ <u>and stops</u> .
			High partial credit: (4 ma	arks)	- Give final answer as $\frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$,
					$\frac{\log_3 xy}{2} \underline{\text{or}} \frac{\log_3 x + \log_3 y}{9}.$

(5D)

Question 3 (cont'd.)

3(b) (cont'd.)

(ii) Hence, or otherwise, solve the simultaneous equations for x and y:

$\log_9 xy$	$=\frac{5}{2}$	
$\log_3 x . \log_3 y$	= -6.	

Express your answers in their simplest form.

0	$\log_9 xy$	=	$\frac{5}{2}$
\Rightarrow	$\frac{\log_3 x}{2} + \frac{\log_3 y}{2}$	=	$\frac{5}{2}$ $\frac{5}{2}$ 5
\Rightarrow	$\log_3 x + \log_3 y$	=	5
\Rightarrow	$\log_3 x + \log_3 y$ $\log_3 x$	=	$5 - \log_3 y$
0	$\log_3 x . \log_3 y$	=	-6
\Rightarrow	$(5 - \log_3 y) \cdot \log_3 y$	=	6
\Rightarrow	$5\log_3 y - (\log_3 y)^2$	=	6
\Rightarrow	$(\log_3 y)^2 - 5\log_3 y - 6$	=	0
\Rightarrow	$(5 - \log_3 y) \cdot \log_3 y$ $5 \log_3 y - (\log_3 y)^2$ $(\log_3 y)^2 - 5 \log_3 y - 6$ $(\log_3 y + 1)(\log_3 y - 6)$	=	0
	$\log_3 y + 1$	=	0
	$\log_3 y$	=	-1
\Rightarrow	y y	=	3^{-1} or $\frac{1}{3}$ or 0.333333
	$\log_3 x$	=	$5 - \log_3 y$
	- 5	=	5 - (-1)
		=	6
\Rightarrow	x	=	3 ⁶
		=	729
and			
2	$\log_3 y - 6$	=	0
\Rightarrow	$\log_3 y$	=	6
\Rightarrow	У	=	36
		=	729
	$\log_3 x$	=	$5 - \log_3 y$
	, i i i i i i i i i i i i i i i i i i i	=	5 - 6
		=	-1
\Rightarrow	x	=	3^{-1} or $\frac{1}{3}$ or 0.333333

** Accept students' answers from part (b)(i) if not oversimplified.

```
Scale 5D (0, 2, 3, 4, 5)
```

Low partial credit: (2 marks)	-	Any relevant first step, <i>e.g.</i> $\log_3 x \text{ or } \log_3 y$ isolated, <i>i.e.</i> $\log_3 x = 5 - \log_3 y$.
Mid partial credit: (3 marks)	_	Substitutes $\log_3 x = 5 - \log_3 y$ correctly into second equation and forms correct quadratic equation.
High partial credit: (4 marks)	_	Correct values for $\log_3 x$ and $\log_3 y$ <i>i.e.</i> $\log_3 x = -1$ and $\log_3 x = 6$ $\log_3 y = 6$ and $\log_3 y = -1$, but fails to finish <u>or</u> finishes incorrectly. Finds one correct solution and finishes correctly.

(25 marks)

4(a)

A curve is defined by the e	A curve is defined by the equation $(x - 3)^2 + y^2 = 25$.					
(i) Find $\frac{dy}{dx}$ in terms of	f <i>x</i> .	(5C)				
0	$\frac{\text{Isolate } y \text{ and differentiate:}}{(x-3)^2 + y^2} = y^2 = y^2 = y^2 = \frac{dy}{dx} = \frac{dy}{dx} = z$	25 25 - (x - 3) ² $\pm \sqrt{25 - (x - 3)^2}$ $\pm \frac{1}{2} [25 - (x - 3)^2]^{-\frac{1}{2}} [0 - 2(x - 3)]$ $\pm \frac{3 - x}{\sqrt{25 - (x - 3)^2}}$				
0	Using implicit differentiation	<u>on:</u>				
	$(x-3)^2 + y^2 =$	25				
	$2(x-3)(1) + 2y\frac{dy}{dx} = \frac{dy}{dx}$					
\Rightarrow	$2y\frac{dy}{dx} =$					
\Rightarrow	$\frac{dy}{dx} =$	$\frac{-2x+6}{2y}$				
	=	$\frac{3-x}{y}$				
⇒	$(x-3)^2 + y^2 = $ $y^2 = $ y =	$25 - (x - 3)^2$				
\rightarrow						
\Rightarrow	$\frac{dy}{dx} =$	$\pm \frac{3-x}{\sqrt{25-(x-3)^2}}$				
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 mar	ks) - Any relevant first step, <i>e.g.</i> attempts to isolates <i>y</i> (correct transpositions) (method 0) and stops. - Differentiates any term correctly (method 0), <i>e.g.</i> $\frac{d}{dx}(x-3)^2 = 2(x-3)(1)$ $\frac{d}{dx}(y)^2 = 2y\frac{dy}{dx}$.				
	High partial credit: (4 mar	and some correct differentiation (method 0), <i>e.g.</i> $\pm \frac{1}{2} [25 - (x - 3)^2]^{-\frac{1}{2}}$				
		 <u>and stops or</u> continues incorrectly. Differentiates all term correctly 				
		(method 2), <i>i.e.</i> $2(x-3)(1) + 2y\frac{dy}{dx} = 0$				
		<u>and</u> isolates $\frac{dy}{dx} = \frac{3-x}{y}$, but fails to give				
		answer in terms of <i>x</i> only.				

(5B)

4(a) (cont'd.)

(ii) Hence, find the equation of the tangent to the curve at the point (6, 4).

	-	_		_			
0		Slope of tangent @	(6, 4)				
		Slope, <i>m</i>	=	$\frac{dy}{dx}$			
		510pe, m					
			=	$\pm \frac{3-x}{\sqrt{25-(x-x)}}$	$(-3)^2$		
	⇒	<i>m</i> @ (6, 4)	=	$\pm \frac{3-6}{\sqrt{25-(6-7)^2}}$	$(-3)^2$		
			=	$\pm \frac{-3}{\sqrt{16}}$,		
			=	$-\frac{3}{4}$		slope < 0 for 3 < 2 in first quadrant	x < 8
		Equation of tangent					
		Point (6, 4), $m = -\frac{3}{4}$					
		$y - y_1$	=	$m(x-x_1)$			
	\Rightarrow	<i>y</i> – 4	=	$m(x-x_1) - \frac{3}{4}(x-6)$			
	\Rightarrow	4(y-4) 4y-16 3x+4y-34	=	-3(x-6)			
	\Rightarrow	4 <i>y</i> – 16	=	-3x + 18			
	\Rightarrow	3x + 4y - 34	=	0			
or							
0		Slope of tangent @	<u>(6, 4)</u>	dy			
		Slope, <i>m</i>	=	$\frac{dy}{dx}$			
			=	$\frac{3-x}{y}$			
	\Rightarrow	<i>m</i> @ (6, 4)	=	$\frac{1}{4}$			
			=	$\frac{3-6}{4}$ $-\frac{3}{4}$			
				4			
		Equation of tangent					
		Point (6, 4), $m = -\frac{3}{4}$	_				
		$y - y_1$		$m(x-x_1)$			
	\Rightarrow	<i>y</i> – 4	=	$m(x-x_1) - \frac{3}{4}(x-6)$			
	\rightarrow	4(y - 4) 4y - 16	_	$-3(x-6) \\ -3x+18$			
	\rightarrow	4(y-4) 4y-16 3x+4y-34	=	$-3\lambda + 10$			
					-+ (-)(`) *	C	
		[swers from pa	rt (a)(1) 1	f not oversimplified.	
, 2, 5)		Partial credit: (2 m	arks)	-	Any rel	levant first step, e.g.	writes

Scale 5B	(0, 2, 5)
----------	-----------

Partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down formula for the equation of a line with x_1
		<u>and/or</u> y_1 substituted.
	_	Finds correct slope at (6, 4) and stops.

4(b) (i) Show that the curve
$$y = \frac{2}{x-3}$$
, where $x \neq 3$ and $x \in \mathbb{R}$, has no turning points and

no points of inflection.

0

0

$$\Rightarrow \frac{\text{Turning points}}{dx} = 0$$

$$y = \frac{2}{x-3}$$

$$= 2(x-3)^{-1}$$

$$\Rightarrow \frac{dy}{dx} = -2(x-3)^{-2}(1)$$

$$= \frac{-2}{(x-3)^2}$$

$$\neq 0 \qquad \dots \text{ as } -2 \neq 0$$

$$\Rightarrow y = \frac{2}{x-3}$$
has no turning points

 \Rightarrow $y = \frac{2}{x-3}$ has no turning points

$$\frac{\text{Points of inflection}}{d^2 v}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = 0$$

$$\Rightarrow \frac{dy}{dx} = -2(x-3)^{-2}(1)$$

$$\Rightarrow \frac{d^2 y}{dx^2} = 4(x-3)^{-3}(1)$$

$$= \frac{4}{(x-3)^3}$$

$$\neq 0 \qquad \dots \text{ as } 4 \neq 0$$

$$\Rightarrow \quad y = \frac{2}{x-3} \text{ has no points of inflection}$$

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\frac{dy}{dx} = 0$ at a turning point or $\frac{d^2y}{dx^2} = 0$ at a point of inflection and stops. Finds $\frac{dy}{dx} = -2(x-3)^{-2}(1)$, but no conclusion given.
	Mid partial credit: (6 marks)	_	Finds $\frac{dy}{dx}$ correctly and concludes not equal to zero and stops. Finds $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly, but neither equated to zero (<i>i.e.</i> no deductions).
	High partial credit: (8 marks)	_	Shows correctly that there are no turning points and finds $\frac{d^2 y}{dx^2}$ or vice versa, but fails to finish. Finds both $\frac{dy}{dx}$ and $\frac{d^2 y}{dx^2}$ correctly and equated to 0, but does not show why this means there are no turning points or points of inflection.

(10D)

(5C)

4(b) (cont'd.)

(ii) Comment on the shape of the curve for all $x \in \mathbb{R}$.

** Accept students' answers from part (b)(i) if not oversimplified.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Mentions that the curve is in two sections, has a break, is not continuous or has an asymptote at $x = 3$ or at $y = 0$.
High partial credit: (4 marks)	_	States that the curve is decreasing for all values of x . States that the curve has two asymptotes at $x = 3$ and $y = 0$.

(ii)

(a) The power supply to a space satellite is provided by means of a generator that converts heat released by the decay of a radioisotope into electricity. The power output, in watts, may be calculated using the function

$$w(t) = Ae^{bt},$$

where *t* is the time, in days, from when the satellite is launched into space. The initial power output at the launch of the satellite is 60 watts.

(i) Given that after 14 days the power output falls to 56 watts, calculate the value of b, correct to three decimal places.

	w(t)	=	Ae^{bt}
	<i>w</i> (0)	=	$Ae^{b(0)}$
		=	60
\Rightarrow	$Ae^{b(0)}$	=	60
\Rightarrow	Ae^0	=	60
$ \begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \end{array} \end{array} $	A(1)	=	60
\Rightarrow	A	=	60
\Rightarrow	w(t)	=	$60e^{bt}$
	w(14)	=	$60e^{b(14)}$
		=	56
\Rightarrow	$60e^{b(14)}$	=	56
\Rightarrow	e^{14b}	=	$\frac{56}{60}$
\Rightarrow	$\ln e^{14b}$	=	$\ln \frac{56}{60}$
\Rightarrow	14 <i>b</i>	=	-0·068992
\Rightarrow	b	=	-0.004928
		ĩ	-0.002

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> substitutes correctly into function for $t = 0$, $w = 60$ [ans. $Ae^0 = 60$] or $t = 14$, $w = 56$ [ans. $Ae^{14b} = 56$]. Finds correct value of A [ans. 60].
	Mid partial credit: (6 marks)	_	Finds $e^{14b} = \frac{56}{60} \text{ or } \frac{14}{15} \text{ and stops.}$
	High partial credit: (8 marks)	_	Finds $e^{14b} = \frac{56}{60}$ and uses \log_e correctly to simplify <i>b</i> term, but fails to find correct
		_	value of <i>b</i> . Finds $14b = \ln \frac{56}{60}$, but fails to find correct value of <i>b</i> .

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

(25 marks)

5(a) (cont'd.)

(ii) The satellite cannot function properly when the power output falls below 5 watts. After how many days will the satellite fail to function properly?

(5C*)

	w(t)	=	$60e^{-0.005t}$
		=	5
\Rightarrow	$60e^{-0.005t}$	=	5
\Rightarrow	$e^{-0.005t}$	=	$\frac{5}{60}$
\Rightarrow	$\ln e^{-0.005t}$	=	$\ln \frac{1}{12}$
\Rightarrow	-0.005t	=	-ln 12
\Rightarrow	t	=	$\frac{\ln 12}{0.005}$
		=	496.981329

 \Rightarrow satellite will fail to function properly after 497 days

** Accept students' answers from part (b)(i) if not oversimplified.

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> substitutes correctly into function $w(t) = Ae^{bt}$ for w = 5 using A and b values from part (i).
High partial credit: (4 marks)	-	Finds $e^{-0.005t} = \frac{5}{60} \text{ or } \frac{1}{12}$ [accept student's values from (i)] and uses \log_e correctly, <i>e.g.</i> $-0.005t = -\ln 12$, but fails to find correct value of <i>t</i> .

Deduct 1 mark off correct answer only if '496 days' given as final answer.
 Deduct 1 mark off correct answer only if not rounded or incorrectly rounded

Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

5(b) Find the value of the constant k for which $w(t + k) = \frac{1}{2}w(t)$, for all $t \ge 0$.

Give your answer in the form $p \ln q$, where $p, q \in \mathbb{N}$.

	w(t+k)	=	$\frac{1}{2}w(t)$
\Rightarrow	$60e^{b(t+k)}$	=	$\frac{1}{2}[60e^{bt}]$
\Rightarrow	$60e^{bt+bk}$ $e^{bt}.e^{bk}$	=	$30e^{bt}$
\Rightarrow	$e^{bt}.e^{bk}$	=	$\frac{30}{60}e^{bt}$
		=	$\frac{1}{2}e^{bt}$
\Rightarrow	e^{bk}	=	$\frac{\frac{1}{2}e^{bt}}{\frac{1}{2}}$
\Rightarrow	$\ln e^{bk}$	=	$\ln \frac{1}{2}$
\Rightarrow \Rightarrow	bk	=	-ln 2
\Rightarrow	-0.005k	=	-ln 2
\Rightarrow	k	=	$\frac{\ln 2}{0.005}$
		=	200 ln 2 <u>or</u> 100 ln 4 <u>or</u> 50 ln 16 <u>or</u> 25 ln 256

** Accept students' answers from part (a) if not oversimplified.

Scale 10D (0, 3, 5, 8, 10)	Low partial credit: (3 marks)	_	Any relevant first step, <i>e.g.</i> writes down $w(t+k) = 60e^{b(t+k)}$ or equivalent [accept students' values for <i>A</i> and <i>b</i> from part (i)].
	Mid partial credit: (5 marks)	_	Finds $e^{bk} = \frac{1}{2}$, $e^{-0.005k} = \frac{1}{2}$ [accept students' values for <i>b</i>].
	High partial credit: (8 marks)	_	Finds correct value of k, but not in the required form, e.g. $\frac{-\ln \frac{1}{2}}{0.005}$, $-20 \ln \frac{1}{2}$ <u>or</u> $k = 138.629436$

(10D)

					2017 LC Maths [HL]	– Paper 1
estion 6						(25 marks)
6(a)		a arranged to pay €12 earns an annual equiv			or 25 years into a pension fund	
	(i)	Show that the rate is 0.0736% , correc			ekly, which corresponds to an AER of 3.9% year = 52 weeks]	(5C*
			r	=	annual percentage rate (APR)	
			i	=	weekly percentage rate	
			F	=	P(1 + r)	
				=	$P(1+i)^t$	
		\Rightarrow	1(1+r)	=	$1(1+i)^{t}$	
		\Rightarrow	1(1+0.039)	=	$1(1+i)^{52}$	
		\Rightarrow	1.039	=	$(1+i)^{52}$	
		\Rightarrow	1 + i	=	$(1.039)^{\frac{1}{52}}$	
		\Rightarrow	i	=	1.00073601	
				=	0.000736015	
		\Rightarrow	r	=	0.0736015%	
				≅	0.0736%	

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula $F = P(1 + i)^t$ and stops. Some correct substitution into correct formula (not stated) and stops or continues Correct substitution into incorrect formula and stops or continues.
High partial credit: (4 marks)	_	Fully correct substitution into formula, <i>i.e.</i> $1(1+0.039) = 1(1+i)^{52}$ or equivalent but fails to find or finds incorrect rate. Final answer not given as a percentage, <i>i.e.</i> $r = 0.000736015$

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

6(a) (cont'd.)

(ii) Calculate, correct to the nearest euro, the total value of Fiona's pension fund when she retires.

(10D*)

=	25 × 52 1,300
=	$\frac{P(1+i)^{t}}{120(1+0.000736)^{t}}$
Paid (€)	Value of payment on retirement (wk. 1,300)
120	$120(1.000736)^{1,299}$
120	$120(1.000736)^{1,298}$
120	$120(1.000736)^{1,297}$
120	$120(1.000736)^2$
120	$120(1.000736)^{1}$
120	120
	= = Paid (€) 120 120 120 120 120

 \Rightarrow Geometric series with n = 1,300, a = 120 and r = 1.000736

	S_n	=	$\frac{a(1-r^n)}{1-r}$
\Rightarrow	<i>S</i> _{1,300}	=	$\frac{120(1-1.000736^{1,300})}{1-1.000736}$
		=	261,266.798874
		≅	€261,267

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> reference to $25 \times 52 = 1,300$ payments <u>or</u> value of first <u>or</u> subsequent payments at retirement $= 120(1.000736)^n$, where $1 < n \le 1,300$.
	Mid partial credit: (6 marks)	_	Recognises value of retirement fund as a sum of a GP with some correct substitution into S_n formula.
	High partial credit: (8 marks)	_	Fully correct substitution into S_n formula, but fails to find <u>or</u> finds incorrect value of fund on retirement.

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

0

6(b) On retirement, Fiona invests the total value of her pension fund in a scheme that earns an AER of 4.2%. Fiona will receive a fixed amount of money at the end of each month for twenty years, at which time the value of her investment will be zero. Calculate, correct to the nearest euro, the amount of each monthly payment

(10D*)

	Interest rat	<u>e</u>				
	r	_	=	annual percen	tage rate (APR))
	i		=	monthly perce	entage rate	
	F		=	P(1+r)		
	1(1,)		=	$P(1+i)^{t}$		
\Rightarrow	1(1+r)		=	$1(1+i)^t$		
\Rightarrow	1(1+0.042) 1.042	.)	=	$\frac{1(1+i)^{12}}{(1+i)^{12}}$		
\rightarrow	1.042		_	(1 + l) 1		
$ \begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \end{array} $	1 + i		=	$(1.042)^{\overline{12}}_{1}$		
\Rightarrow	i		=	$1 \cdot 042^{\overline{12}} - 1$		
			=	1.003434 –	1	
			=	0.003434		
\Rightarrow	r		=	0.3434%		
		ed mont		ment for 20 yea	rs	
	# payments	5	=	12×20		
			=	240		
	F		=	$P(1+i)^{t}$		
\Rightarrow	Р		=	F		
				$\frac{\overline{(1+i)^t}}{X}$		
			=	$\frac{1}{(1+0.003434)}$	$\overline{)^t}$	
				(1 + 0.003434)	.)	
			=			
				1.002424^{t}		
				1.003434 ^{<i>t</i>}	D (
	Month	of	Preser	nt value	Future	
	Month	of	Preser future p		payment (F)	
	Month 1	of	Preser future p	nt value bayment (P) K		
		of	Present future present $\frac{1}{1.003}$	$\frac{1}{2}$	payment (F) X	
		of	$\frac{\text{Preser}}{\text{future } \text{f}}$ $\frac{2}{1.003}$	$\frac{1}{K}$	payment (F)	
	1 2	of	$\frac{\text{Preser}}{\text{future } \text{r}}$ $\frac{2}{1.003}$ $\frac{2}{1.003}$	$\frac{1}{8}$	payment (F) X X	
	1	of	Preser future r 	nt value payment (P) $\frac{K}{434^{1}}$ $\frac{K}{434^{2}}$	payment (F) X X 	
	1 2	of	Preset future p 1.003 1.003	nt value bayment (P) $\frac{X}{434^{1}}$ $\frac{X}{434^{2}}$ X	payment (F) X X	
⇒	1 2 240		Preser future r 1.003 1.00	nt value bayment (P) $\frac{X}{434^{1}}$ $\frac{X}{434^{2}}$ $\frac{X}{434^{240}}$ $240, a = \frac{X}{1.0034}$	payment (F) X X X	<u>1</u> 03434
⇒	1 2 240		Preser future r 1.003 1.00	$\frac{1}{434}$ $\frac{1}{434^{2}}$ $\frac{1}{434^{240}}$ $\frac{1}{240, a = \frac{X}{1.0034}}$ $\frac{a(1 - r^{n})}{1 - r}$	payment (F) X X \dots X \overline{X} \overline{X} $\overline{34}$ and $r = \frac{1.00}{1.00}$	
\Rightarrow	1 2 240 Geometric		Preser future r 1.003 1.00	$\frac{1}{434}$ $\frac{1}{434^{2}}$ $\frac{1}{434^{240}}$ $\frac{1}{240, a = \frac{X}{1.0034}}$ $\frac{a(1 - r^{n})}{1 - r}$	payment (F) X X \dots X \overline{X} \overline{X} $\overline{34}$ and $r = \frac{1.00}{1.00}$	
${\rightarrow} \qquad {\rightarrow} \qquad$	1 2 240 Geometric <i>S_n</i>		Presen future p $1\cdot003$ $1\cdot003$ $1\cdot0034$ rith $n =$	$\frac{1}{434}$ $\frac{1}{434^{2}}$ $\frac{1}{434^{240}}$ $\frac{1}{240, a = \frac{X}{1.0034}}$ $\frac{a(1 - r^{n})}{1 - r}$	payment (F) X X X X $\overline{34}$ and $r = \frac{1}{1.00}$ $-\frac{1}{1.003434^{240}}$	
$\hat{\uparrow} \qquad \hat{\uparrow}$	1 2 240 Geometric <i>S_n</i>		Present future present $1 \cdot 003$ $1 \cdot 0034$ $1 \cdot 0034$ rith $n =$ =	nt value payment (P) $\frac{X}{434^{1}}$ $\frac{X}{434^{2}}$ $\frac{X}{434^{240}}$ 240, $a = \frac{X}{1.0034}$ $\frac{a(1 - r^{n})}{1 - r}$ $\frac{X}{1.003434} \left(1 - \frac{x}{1 - \frac{1}{1 - \frac{1}{1$	payment (F) X X X X 34 and $r = \frac{1}{1.00}$ $-\frac{1}{1.003434^{240}}$ $\frac{1}{003434}$.)	
$\hat{\uparrow} \qquad \hat{\uparrow} \qquad \hat{\uparrow} \qquad \hat{\uparrow}$	1 2 240 Geometric <i>S_n</i>	series w	Preser future r $1 \cdot 003$ $1 \cdot 0034$ $1 \cdot 0034$ with $n =$ = =	$\frac{x}{8434^{1}}$ $\frac{X}{434^{2}}$ $\frac{X}{434^{2}}$ $\frac{X}{434^{240}}$ $240, a = \frac{X}{1.0034}$ $\frac{a(1-r^{n})}{1-r}$ $\frac{X}{1.003434} \left(1 - \frac{1}{1.003434} - \frac{1}{1.003434}\right)$ $\frac{x}{1-r}$ $\frac{X(0.558897)}{0.003422}$	payment (F) X X X X 34 and $r = \frac{1}{1.00}$ $-\frac{1}{1.003434^{240}}$ $\frac{1}{003434}$.)	
$\hat{\Pi} \qquad \hat{\Pi} \qquad $	$ \begin{array}{c} 1\\ 2\\ \dots\\ 240\\ \end{array} $ Geometric S_n S_{240}	series w	Preser future r $1 \cdot 003$ $1 \cdot 0034$ $1 \cdot 0034$ with $n =$ = =	nt value payment (P) $\frac{X}{434^{1}}$ $\frac{X}{434^{2}}$ $\frac{X}{434^{240}}$ $240, a = \frac{X}{1.0034}$ $\frac{a(1 - r^{n})}{1 - r}$ $\frac{X}{1.003434} (1 - \frac{1}{1 $	payment (F) X X X X 34 and $r = \frac{1}{1.00}$ $-\frac{1}{1.003434^{240}}$ $\frac{1}{1003434}$ X	
$\begin{array}{ccc} \uparrow & & \uparrow \\ \uparrow & & \uparrow \\ \uparrow & & \uparrow \\ \uparrow \end{array}$	$ \begin{array}{c} 1\\ 2\\ \dots\\ 240\\ \end{array} $ Geometric S_n S_{240}	series w	Preser future r $1\cdot003$ $1\cdot003$ $1\cdot0034$ rith $n =$ = = = = =	nt value payment (P) $\frac{X}{434^{1}}$ $\frac{X}{434^{2}}$ $\frac{X}{434^{2}}$ $240, a = \frac{X}{1.0034}$ $\frac{a(1 - r^{n})}{1 - r}$ $\frac{X}{1.003434} (1 - \frac{1}{1 - $	payment (F) X X X X 34 and $r = \frac{1}{1.00}$ $-\frac{1}{1.003434^{240}}$ $\frac{1}{1003434}$ X	

6(b) (cont'd.)

0

Amortisation		
A	=	$P\frac{i(1+i)^t}{(1+i)^t-1}$
t	=	12×20
	=	240
i	=	0.003434
Р	=	261,267
X	=	fixed monthly payment
$\Rightarrow A$	=	$\underline{261,267(0.003434)(1+0.003434)^{240}}$
, 11		$(1.003434)^{240} - 1$
	=	261,267(0.003434)(1.003434) ²⁴⁰
		$(1.003434)^{240} - 1$
	=	1599.906538
	≅	€1,600

** Accept students' answers from part (a)(ii) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> calculates correct monthly rate [ans. 0.003434379 , (rounded <u>or</u> not)] <u>or</u> number of payments [ans. $20 \times 12 = 240$].
	Mid partial credit: (6 marks)	_	Recognises sum of future payments as a sum of a GP with some correct substitution in S_n formula. Writes down correct relevant formula for amortisation with some correct substitution into formula.
	High partial credit: (8 marks)	_	Fully correct substitution into $S_n \text{ or }$ amortisation formula, but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

2017.1 L.17/20 MS 24/80

Page 24 of 79

$$= \frac{n}{2}[2(1) + (n-1)(1)]$$

 $\frac{n}{2}[2a+(n-1)d]$

$$= \frac{n}{2}[2(1) + (n-1)]$$

= $\frac{n}{2}[2 + n - 1]$
= $\frac{n}{2}[n+1]$

Scale 5C (0, 2, 4, 5)Low partial credit: (2 marks)-Any relevant first step, e.g. writes down
sequence A is linear (arithmetic) pattern
with
$$a = 1$$
 and $d = 1$.
-
Finds $T_n = n$ (by inspection or calculation)
and stops.High partial credit: (4 marks)-Finds correct T_n and writes down formula
for S_n with a and d correctly identified,
but not fully substituted/simplified.

$$k_1 = 3, k_2 = 3$$
 and $k_4 = 1$).
The triangle may be constructed as follows: In row 0 (the topmost row), the entry is 1. Each entry in successive rows is found by adding the number above and to the left with the number above and to the right, treating blank entries as 0.
There are several patterns found within Pascal's triangle. Consider the two sequences, A and B, shown below.

The rows of Pascal's triangle are conventionally enumerated, starting with row r = 0 at the top (row 0). The entries in each row are numbered from left to right, beginning with k = 0 (e.g. in row 3, $k_0 = 1$,

Find an expression for T_n , the *n*th term, and S_n , the sum of the first *n* terms, of sequence A. 7(a)

)		T_n , the <i>n</i> th term Sequence <i>A</i> :		1, 2, 3, 4, 5,
	\Rightarrow	arithmetic series		1, 2, 3, 4, 5,
		T_n	=	a + (n-1)d
		а	=	1
		d	=	1
	\Rightarrow	T_n	=	1 + (n - 1)1
			=	1 + n - 1
			=	п

 S_n , the sum of the first *n* terms

=

 S_n

			1				 	row 0
		1		1			 	row 1
	1		2		1		 	row 2
1		3		3		1		row 3

Contexts and Applications

The diagram below shows the beginning of Pascal's triangle.

Answer all three questions from this section.

 $k_1 = 3, k_2 = 3$ and $k_4 = 1$).

0

0

shown below.

Section **B**

Question 7

(50 marks)

(5C)

150 marks

(10D)

7(b) Find an expression for T_n , the *n*th term of sequence *B*.

Sequence <i>B</i> :	=	1, 3, 6, 10,
Term	1st Diff.	2nd Diff.
1	2	1
3	2	<u><u>1</u></u>
6	<u> </u>	1
10	4]

 $\begin{array}{ll}\Rightarrow & \text{first differences are not constant, but the second differences are constant} \\\Rightarrow & \text{terms form a quadratic sequence} \end{array}$

\Rightarrow	terms form a quadra	atic seq	uence	
	T_n	=	$an^2 + bn + c$	
	2 <i>a</i>	=	1	
\Rightarrow	а	=	$\frac{1}{2}$	
\Rightarrow	T_n	=	$\frac{1}{2}n^2 + bn + c$	
$\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \end{array}$	$T_1 = 1$ $\frac{1}{2}(1)^2 + b(1) + c$	=	1	
\Rightarrow	$\frac{1}{2} + b + c$	=	1	
	b+c	=	$\frac{1}{2}$	1
	$T_2 = 3$			
\Rightarrow	$T_2 = 3$ $\frac{1}{2}(2)^2 + b(2) + c$	=	3	
$\begin{array}{c} \uparrow \\ \uparrow $	2+2b+c 2b+c	= =	3 1	0
\Rightarrow	-b-c	=	$-\frac{1}{2}$	① (×-1)
	2b+c	=	1	2
\Rightarrow	b	=	$-\frac{1}{2}$ $\frac{1}{2}$ 0	
and	С	=	$\overset{2}{0}$	
\Rightarrow	T_n	=	$\frac{1}{2}n^2 + \frac{1}{2}n$	
		=	$\frac{n}{2}(n+1)$	
	Sequence <i>B</i> :		1, 3, 6, 10,	(-)
		=	$\begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 4\\2 \end{pmatrix}$	$\left , \begin{pmatrix} 5\\2 \end{pmatrix}, \dots \right $
\Rightarrow	T_n	=	$ \begin{array}{c} 1, 3, 6, 10, \dots \\ \binom{2}{2}, \binom{3}{2}, \binom{4}{2} \\ \binom{n+1}{2} \end{array} $	

or

0

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down sequence B is quadratic pattern as second difference is constant.
	_	Finds $T_n = \frac{1}{2}n^2 + bn + c$ and stops.
Mid partial credit: (6 marks)	_	Writes down $T_n = \frac{1}{2}n^2 + bn + c$ and finds
		correct value of a <u>and stops</u> .
High partial credit: (8 marks)	_	Forms two correct equations in b and c , but fails to finish <u>or</u> finish incorrectly.

 $\frac{(n+1)n}{2}$

=

Verify that the third entry of row 6 of Pascal's triangle is found by adding T_5 of 7(c) (i) sequence A and T_A of sequence B.

(1)	sequence A and T_4 of	f sequence <i>B</i> .					5C)
		Row 6:		1, 6,	15, 2	20, 15, 6, 1	
	\Rightarrow	Sequence A: $T_n(A)$ $T_5(A)$	=	n 5			
		Sequence <i>B</i> :					
		$T_n(B)$	=	$\frac{n}{2}(n+1)$)		
	\Rightarrow	$T_4(B)$	=	$\frac{4(5)}{2}$			
			=	10			
	\Rightarrow	$T_5(A) + T_4(B)$	=	5 + 10			
	\Rightarrow	3rd entry of row 6	=	$15 T_5(A) +$	$T_4(B$)	
Scale 5	5C (0, 2, 4, 5)	Low partial credit	: (2 mar	rks)	_	Any relevant first step, <i>e.g.</i> writes down at least first three terms of row 6 from Pascal's triangle <u>and stops</u> . Finds correct values of $T_5(A)$ <u>and/or</u> T_4 <u>and stops</u> .	
		High partial credit	t: (4 ma	rks)	_	Finds correct values of $T_5(A)$ and $T_4(B)$ and third entry of row 6, but no conclus given.	

Find an expression, in r, for the third entry of the rth row and hence, verify your answer (ii) to part (i) above.

0		Expression, in r, for third entry of row r					
		Row <i>r</i> :					
		Third entry	=	1 1 () 1 2 ()			
		$T_{r-1}(A)$	=	<i>r</i> – 1			
		$T_{r-2}(B)$	=	$\frac{r-1}{\frac{(r-2)(r-2+1)}{2}}$			
			=	$\frac{(r-2)(r-1)}{2}$			
	\Rightarrow	Third entry	=	$r-1+\frac{(r-2)(r-1)}{2}$			
			=	$\frac{2(r-1) + (r-2)(r-1)}{2}$			
			=	$\frac{2r - 2 + r^2 - 3r + 2}{2}$			
			=	$\frac{r^2-r}{2}$			
			=	$\frac{r(r-1)}{2}$			
0		<u>Verify answer to pa</u> For <i>r</i> = 6	<u>rt (i)</u>				
		Third entry	=	$\frac{6(6-1)}{2}$			
		2		2 30			
			=	$\frac{30}{2}$			

2017.1 L.17/20_MS 26/80

=

15

(5C)

7(c) (ii) (cont'd.)

Scale 5C (0, 2, 4, 5)

** Accept students' answers from part (c)(i) if not oversimplified.

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down 'Third entry = $T_{r-1}(A) + T_{r-2}(B)$ ' <u>and stops</u> . Finds $T_{r-1}(A)$ or $T_{r-2}(B)$ correctly <u>and stops</u> .	
High partial credit: (4 marks)	_	Finds $T_{r-1}(A)$ and $T_{r-2}(B)$ correctly and finds third entry in terms of <i>r</i> , but fails to verify answer to part (i).	

(iii) An entry in Pascal's triangle is denoted $\binom{r}{k}$ and can be determined using the formula:

$$\binom{r}{k} = \binom{r-1}{k-1} + \binom{r-1}{k},$$

where *r* is the row number (top row = 0) and *k* is the entry number in row *r* (first entry = 0). Using the above formula, verify your expression, in *r*, for the third entry in the *r*th row.

Third entry in row
$$r = \binom{r}{2}$$

$$= \binom{r-1}{1} + \binom{r-1}{2}$$

$$= \frac{(r-1)!}{1!(r-1-1)!} + \frac{(r-1)!}{2!(r-1-2)!}$$

$$= \frac{(r-1)!}{(r-2)!} + \frac{(r-1)!}{2!(r-3)!}$$

$$= r-1 + \frac{(r-2)(r-1)}{(2)(1)}$$

$$= \frac{2(r-1) + (r-2)(r-1)}{2}$$

$$= \frac{2r-2 + r^2 - 3r + 2}{2}$$

$$= \frac{r^2 - r}{2}$$

$$= \frac{r(r-1)}{2}$$

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> substitutes 2
		for k, i.e. $\binom{r}{2} = \binom{r-1}{1} + \binom{r-1}{2}$ and stops
	_	Finds $\binom{r-1}{1}$ and/or $\binom{r-1}{2}$ correctly
		and stops.
High partial credit: (4 marks)	_	Finds $\binom{r}{2} = \binom{r-1}{1} + \binom{r-1}{2}$ and expanded
		both $\binom{r-1}{1}$ and $\binom{r-1}{2}$ but fails to
		finish correctly.

(5C)

(10D)

7(d) Prove by induction that S_n , the sum of the first *n* terms of sequence *B*, is $\frac{n(n+1)(n+2)}{6}$ for all $n \in \mathbb{N}$.

0	P(<i>n</i>):		
	$1 + 3 + 6 + 10 + \dots + \frac{n(n+1)}{2}$	=	$\frac{n(n+1)(n+2)}{6}$
0	P(1):		
	Test hypothesis for $n = 1$		
	$\frac{1(1+1)}{2}$	=	$\frac{\frac{1(1+1)(1+2)}{6}}{\frac{1(2)(3)}{6}}$ $\frac{\frac{6}{6}}{6}$
	$\frac{1(2)}{2}$	=	<u>1(2)(3)</u>
	2		6 6
	1	=	6
\Rightarrow	True for $n = 1$	=	1
6	P(<i>k</i>):		
	Assume hypothesis for $n = k$ is		
\Rightarrow	$1 + 3 + 6 + 10 + \dots + \frac{k(k+1)}{2}$	=	$\frac{k(k+1)(k+2)}{6}$
4	P(k + 1):		
	Test hypothesis for $n = k + 1$ To Prove:		
	$1+3+6+10++\frac{k(k+1)}{2}+$	(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)	(k + 2)
	2	2	$\frac{(k+1)(k+2)(k+3)}{6}$
			6
	Proof: $k(k+1) = k(k+1)$	(k + 1)(k + 1)	<i>k</i> + 2)
	$1 + 3 + 6 + 10 + \dots + \frac{k(k+1)}{2} + \dots$	2	- · · · · · · · · · · · · · · · · · · ·
		=	$\frac{k(k+1)(k+2)}{6} + \frac{(k+1)(k+2)}{2}$
		=	$\frac{k(k+1)(k+2) + 3(k+1)(k+2)}{6}$
			0
		=	$\frac{(k+1)(k+2)(k+3)}{6}$
\Rightarrow	True for $n = k + 1$	(1) := 4====	
	So, $P(k + 1)$ is true whenever P(Since P(1) is true, then by induc		is true for any positive integer $n \ (n \in \mathbb{N})$.
Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correctly P(1) step <u>and stops</u> .
	Mid partial credit: (6 marks)	_	Writes down correctly $P(1)$ and $P(k)$ or $P(k+1)$ steps.

whice partial credit. (6 marks)	_	or $P(k+1)$ steps.
High partial credit: (8 marks)	_	Writes down correctly $P(1)$ step and $P(k)$ and uses $P(k)$ to prove $P(k + 1)$ step, but fails to finish <u>or</u> finish incorrectly. Writes down all steps correctly, but no conclusion given.

(5C)

- 7(e) The coefficients of a binomial expansion can be found using Pascal's triangle.
 - (i) Using Pascal's triangle, or otherwise, expand $(a + b)^4 + (a b)^4$ and simplify.

$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	Row 4: $(a+b)^4 = $ $(a-b)^4 = $ $(a+b)^4 + (a-b)^4 = $ =	1, 4, 6, 4, 1 $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ $a^4 - 4a^3b + 6a^2b^3 - 4ab^3 + b^4$ $2a^4 + 12a^2b^2 + 2b^4$ $2(a^4 + 6a^2b^2 + b^4)$
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	- Any relevant first step, <i>e.g.</i> expands $(a + b)^4 \text{ or } (a - b)^4$ correctly and stops.
	High partial credit: (4 marks)	- Expands both $(a + b)^4$ and $(a - b)^4$ correctly, but fails to find their sum <u>or</u> not fully simplified.

(ii) Hence, express
$$(x + \sqrt{x^2 + 1})^4 + (x - \sqrt{x^2 + 1})^4$$
 as a polynomial in terms of x. (5C)

$$(a+b)^{4} + (a-b)^{4} = 2(a^{4} + 6a^{2}b^{2} + b^{4})$$

Let $a = x$ and $b = \sqrt{x^{2} + 1}$

$$\Rightarrow (x + \sqrt{x^{2} + 1})^{4} + (x - \sqrt{x^{2} + 1})^{4}$$

$$= 2[x^{4} + 6(x)^{2}(\sqrt{x^{2} + 1})^{2} + (\sqrt{x^{2} + 1})^{4}]$$

$$= 2[x^{4} + 6x^{2}(x^{2} + 1) + (x^{2} + 1)^{2}]$$

$$= 2[x^{4} + 6x^{4} + 6x^{2} + x^{4} + 2x^{2} + 1]$$

$$= 2[8x^{4} + 8x^{2} + 1]$$

$$= 16x^{4} + 16x^{2} + 2$$

** Accept students' answers from part (ii) if not oversimplified.

Scale 5C	(0,	2,	4,	5)	
----------	-----	----	----	----	--

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> substitutes correctly x for a and $\sqrt{x^2+1}$ for b into $2(a^4 + 6a^2b^2 + b^4)$ and stops.
High partial credit: (4 marks)	_	Finds $2[x^4 + 6x^2(x^2 + 1) + (x^2 + 1)^2]$ or $2x^4 + 12x^2(x^2 + 1) + 2(x^2 + 1)^2$ correctly, but not fully simplified.

8(a)

it is harvested. A particular inverted right cone, as show	for the bulk storage of grain r grain silo is in the shape of wn. The vertical height of the er of the base of the cone is	f an he	4 m
	npty silo at a uniform rate o the depth of the grain and r b e silo after t minutes.		h a 5 m
(i) Using similar triang	gle, or otherwise, show that <i>i</i>	$r=\frac{2h}{5}.$	(5B)
\Rightarrow	Diameter of cone = radius of cone =	4 m 2 m	
\Rightarrow	From the diagram: $\frac{r}{2} = r$	$\frac{h}{5}$ $\frac{2h}{5}$	equiangular / similar triangles as both have common angle α , 90° angles and hence the third angles in both triangles are equal
Scale 5B (0, 2, 5)	Partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\tan \alpha = \frac{r}{h} \frac{\text{or } 2}{5} \frac{2}{5} \frac{\text{and stops.}}{1}$ Explains why triangles are similar.

Find, in terms of π and *h*, the volume of grain in the silo after *t* minutes. (ii)

(5C)

After t minutes:		
$V_{\text{grain}}(t)$	=	$\frac{1}{3}\pi r^2h$
	=	$\frac{1}{3}\pi(\frac{2h}{5})^2h$
	=	$\frac{1}{3}\pi(\frac{4h^2}{25})h$
	=	$\frac{4\pi h^3}{75} \mathrm{m}^3$

Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for the volume of a cone with some substitution for r and stops [accept $r = 2$].
	High partial credit: (4 marks)	_	Substitutes fully into volume formula <i>i.e.</i> $V_{\text{grain}}(t) = \frac{1}{3}\pi(\frac{2h}{5})^2h$, but fails to finish <u>or</u> finish incorrectly.

Scale

8(b) (i) Find, in terms of π , the rate at which the depth of grain is increasing when the depth of grain in the silo is 3 m.

	$\frac{dV}{dt}$	=	$4 \text{ m}^3/\text{min}$
	V	=	$\frac{4\pi h^3}{75}$
\Rightarrow	$\frac{dV}{dh}$	=	$\frac{12\pi h^2}{75}$
	$\frac{dV}{dh}$ $\frac{dV}{dt}$	=	$\frac{dV}{dh} \times \frac{dh}{dt}$
\Rightarrow	4	=	$\frac{12\pi h^2}{75} \times \frac{dh}{dt}$
\Rightarrow	$\frac{dh}{dt}$	=	$4 imes rac{75}{12\pi h^2}$
		=	$\frac{300}{12\pi h^2}$
		=	$\frac{25}{\pi h^2}$
⇒	$\frac{@}{dh}h = 3$ $\frac{dh}{dt}$	=	$\frac{25}{\pi(3)^2}$
		=	$\frac{25}{9\pi}$ m/min

(15D*)

** Accept students' answers from part (a)(ii) if not oversimplified.

15D* (0, 6, 10, 13, 15)	Low partial credit: (6 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\frac{dV}{dt} = 4 \text{ or } \frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt} \text{ and stops.}$ Some correct relevant differentiation <i>e.g.</i> $\frac{dV}{dh} = \frac{12\pi h^2}{75}$. Mentions a relevant rate of change <i>i.e.</i> $\frac{dV}{dt} \text{ and/or } \frac{dV}{dh} \text{ and/or } \frac{dh}{dt}$.
	Mid partial credit: (10 marks)	—	Finds $4 = \frac{12\pi h^2}{75} \times \frac{dh}{dt}$ correctly, but fails to manipulate <u>or</u> manipulates incorrectly.
	High partial credit: (13 marks)	_	Finds $\frac{dh}{dt} = \frac{75}{3\pi h^2}$, but fails to evaluate or evaluates incorrectly the rate of change when the depth of grain is 3 m.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m/min') - apply only once in each section (a), (b), (c), *etc.* of question.

8(b) (cont'd.)

(ii) Find the rate at which the free surface of the grain is increasing when the radius is 1.5 m. (10D*)

	Surface of the gran	1 15 4 01	lete of fuerus /	
	$S_{ m grain}$	=	πr^2	
		=	$\pi(\frac{2h}{5})^2$	
		=	$\frac{4h^2\pi}{25}$	
\Rightarrow	$\frac{dS}{dh}$	=	$\frac{8h\pi}{25}$	
	$\frac{dh}{dt}$	=	$\frac{25}{\pi h^2}$	answer from part (b)(i)
	$\frac{dS}{dt}$	=	$\frac{dS}{dh} \times \frac{dh}{dt}$	
		=	$\frac{\frac{8h\pi}{25}}{\frac{25}{\pi h^2}} \times \frac{\frac{25}{\pi h^2}}{\frac{8}{h}}$	
		=	$\frac{8}{h}$	
	r	=	$\frac{2h}{5}$ $\frac{5r}{2}$	given in part (a)
\Rightarrow	h	=	$\frac{5r}{2}$	
	(a) $r = 1.5$			
	h	=	$\frac{5(1\cdot 5)}{2}$	
		=	3.75	
\Rightarrow	$\frac{dS}{dt}$	=	$\frac{8}{3.75}$	
		=	$\frac{32}{15}$ m ² /min <u>or</u>	$2.13 \text{ m}^2/\text{min}$

Surface of the grain is a circle of radius r

** Accept students' answers from part (b)(i) if not oversimplifie	**	Accept students'	answers fi	rom part ((b)(i) if n	ot oversimplified
---	----	------------------	------------	------------	-------------	-------------------

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> substitutes $\frac{2h}{5}$ into area formula to find $S_{\text{grain}} = \frac{4h^2\pi}{25}$ <u>or</u> writes down $\frac{dS}{dt} = \frac{dS}{dh} \times \frac{dh}{dt}$ <u>and stops</u> . Mentions a relevant rate of change <i>i.e.</i> $\frac{dS}{dt}$ <u>and/or</u> $\frac{dS}{dh}$ <u>and/or</u> $\frac{dh}{dt}$.
	Mid partial credit: (6 marks)	_	Correct relevant differentiation <i>e.g.</i> $\frac{dV}{dh} = \frac{12\pi h^2}{75}$ and stops or continues incorrectly.
	High partial credit: (8 marks)	_	Finds $\frac{dS}{dt} = \frac{8h\pi}{25} \times \frac{25}{\pi h^2} \text{ or } \frac{8}{h}$, but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m/min') - apply only once in each section (a), (b), (c), *etc.* of question.

- **8(c)** The company which manufactures these grain silos wishes to minimise the amount of sheet metal required to produce each one while retaining the same capacity (volume) of the tank.
 - (i) Express the curved surface area of the silo in term of π and h.

(10D)

$$V_{\text{silo}} = \frac{1}{3}\pi(2)^{2}(5)$$

$$= \frac{20\pi}{3} \text{ m}^{3}$$

$$\Rightarrow V_{\text{optimum silo}} = \frac{1}{3}\pi R^{2}H$$

$$= \frac{20\pi}{3}$$

$$\Rightarrow \frac{1}{3}\pi R^{2}H = \frac{20\pi}{3}$$

$$\Rightarrow R^{2}H = 20$$

$$\Rightarrow R^{2}H = 20$$

$$\Rightarrow R^{2}H = 20$$

$$\Rightarrow R^{2} = \frac{20}{H}$$

$$CSA = \pi RL$$

$$= \pi R\sqrt{R^{2} + H^{2}}$$

$$= \pi \sqrt{\frac{20}{H}}\sqrt{\frac{20}{H} + H^{2}}$$

$$= \pi \sqrt{\frac{400}{H^{2}} + \frac{20H^{2}}{H}}$$

$$= \pi (400H^{-2} + 20H)^{\frac{1}{2}}$$

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	- Any relevant first step, <i>e.g.</i> calculates correct volume of cone [ans. $\frac{20\pi}{3}$]. - Equates volume of cone to optimum cone, but fails to find $R^2 = \frac{20}{H} \text{ or } R^2 H = 20$.
	Mid partial credit: (6 marks)	- Equates volume of cone to optimum cone and find $R^2 = \frac{20}{H}$ or $R^2H = 20$ and stops or continues incorrectly.
	High partial credit: (8 marks)	- Finds CSA = $\pi \sqrt{\frac{20}{H}} \sqrt{\frac{20}{H} + H^2}$, but fails to finish <u>or</u> finishes incorrectly.

8(c) (cont'd.)

(ii) Hence, find the value of the radius that minimises the curved surface area of the grain silo, correct to two decimal places.

(5D*)

	CSA	=	$\pi (400H^{-2} + 20H)^{\frac{1}{2}}$
\Rightarrow	$\frac{d}{dh}$ (CSA)	=	$\frac{1}{2}\pi(400H^{-2}+20H)^{-\frac{1}{2}}.[(-2)400H^{-3}+20]$
		=	0
\Rightarrow	$\frac{-400H^{-3}+10}{\sqrt{400H^{-2}+20H}}$	=	0 for minimum surface
\Rightarrow	$-400H^{-3} + 10$	=	0
\Rightarrow	$\frac{400}{H^3}$	=	10
\Rightarrow	H^3	=	$\frac{400}{10}$
		=	40
\Rightarrow	Н	=	$\sqrt[3]{40}$
\Rightarrow	R^2	=	$\frac{20}{\sqrt[3]{40}}$
_	R	=	5·848035 2·418271
	21	≅	2·42 m

** Accept students' answers from part (c)(i) if not oversimplified.

Scale 5D* (0, 2, 3, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\frac{d}{dh}(CSA) = 0$ for minimum surface' <u>or</u> equivalent <u>and stops</u> .
Mid partial credit: (3 marks)		Differentiates correctly to find $\frac{d}{dh}$ (CSA) and stops or continues incorrectly.
High partial credit: (4 marks)	_	Solves correctly for $H = \sqrt[3]{40}$, but fails to find <u>or</u> finds incorrect value for <i>r</i> .

1

Deduct 1 mark off correct answer only **0** if final answer(s) are not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('m')
 apply only once to each section (a), (b), (c), *etc.* of question.

(50 marks)

(10D*)

(a) The acceleration of a particle, in $m s^{-2}$, moving in a straight line during a particular time interval, is given by:

$$a = \frac{1}{t^2} + 3t$$
, for $1 \le t \le 5$,

where *t* is the time, in seconds, from the instant the particle begins to move.

(i) Given that the speed of the particle is $\frac{1}{2}$ after 1 s, find its speed after 5 s.

$$a = \frac{1}{t^{2}} + 3t$$

$$= t^{-2} + 3t$$

$$\Rightarrow \frac{dv}{dt} = t^{-2} + 3t$$

$$\Rightarrow \int (\frac{dv}{dt})dt = \int (t^{-2} + 3t)dt$$

$$\Rightarrow \int dv = \int (t^{-2} + 3t)dt$$

$$v = \frac{t^{-1}}{-1} + \frac{3t^{2}}{2} + c$$

$$= \frac{3t^{2}}{2} - \frac{1}{t} + c$$

when
$$t = 1, v = \frac{1}{2}$$

 \Rightarrow

\Rightarrow	$\frac{1}{2}$	=	$\frac{3}{2}(1)^2 - \frac{1}{1} + c$
\Rightarrow	$\frac{1}{2}$	=	$\frac{3}{2} - 1 + c$
\Rightarrow	С	=	$\frac{1}{2} - \frac{3}{2} + 1$
		=	0
	when $t = 5$		2
	v(t)	=	$\frac{3t^2}{2} - \frac{1}{t}$

$$v(5) = \frac{3}{2}(5)^2 - \frac{1}{5}$$

= $\frac{75}{2} - \frac{1}{5}$
= $37 \cdot 5 - 0 \cdot 2$
= $37 \cdot 3 \text{ m/s}$

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> replaces $a \text{ with } \frac{dv}{dt} \text{ and stops.}$ Some correct integration and stops <u>or</u> continues incorrectly.
	Mid partial credit: (6 marks)	_	Finds $v = \frac{t^{-1}}{-1} + \frac{3t^2}{2} + c \operatorname{or} \frac{3t^2}{2} - \frac{1}{t} + c$ and stops or continues incorrectly.
	High partial credit: (8 marks)	_	Finds correct expression for <i>v</i> , <i>i.e.</i> $v(t) = \frac{3t^2}{2} - \frac{1}{t}$, but fails to evaluate <u>or</u> evaluates incorrectly for $t = 5$.

* Note: If arithmetic error only, award 9 marks.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m/s') - apply only once in each section (a), (b), (c), *etc*. of question.

(10D*)

9(a) (cont'd.)

(ii) Find the average speed of the particle over the interval $1 \le t \le 5$. Give your answer correct to two decimal places.

 \Rightarrow

Average value of f(x) in the interval [a, b]

 $= \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$ $= \frac{3t^2}{2} - \frac{1}{t}$ v(t)... from part (a)(i) $= \frac{1}{5-1} \int_{1}^{5} (\frac{3t^2}{2} - \frac{1}{t}) dx$ Average speed $= \frac{1}{4} \left[\frac{3t^3}{6} - \ln|t| \right] \Big|_{1}^{5}$ $= \frac{1}{4} \left[\frac{3}{6} (5)^3 - \ln|5|\right] - \frac{1}{4} \left[\frac{3}{6} (1)^3 - \ln|1|\right]$ $= \frac{1}{4} \left[\frac{375}{6} - \ln|5| \right] - \frac{1}{4} \left[\frac{3}{6} - 0 \right]$ $= \frac{1}{4} \left[\frac{372}{6} - \ln |5| \right]$ $= \frac{1}{4}[62 - \ln|5|]$ $\frac{1}{4}[62 - \ln |5|]$ = 15.097640... = 15·10 m/s ĩ

** Accept students' answers from part (a)(ii) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down relevant formula for the average value of a function. Integrates one term correctly.
	Mid partial credit: (6 marks)	_	Integrates both terms correctly, but excludes $\frac{1}{b-a}$ from calculation.
	High partial credit: (8 marks)		Integrates correctly, <i>i.e.</i> average speed $= \frac{1}{4} \left[\frac{3t^3}{6} - \ln t \right] \text{ or } \frac{1}{4} \left[\frac{3t^3}{6} - \ln t \right] \Big _{1}^{5},$ but fails to evaluate <u>or</u> evaluates incorrectly <u>or</u> evaluates using incorrect limits.

Deduct 1 mark off correct answer only **0** if final answer(s) are not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('m')
 apply only once to each section (a), (b), (c), *etc.* of question.

The diagram shows the vertical cross-section of a roadway through a particular terrain. The proposed elevation of the roadway is 14 m above sea-level and therefore a cut is required between points A and B.

Using the co-ordinate plane with the *y*-axis as the initial point of the cut and the *x*-axis as sea-level, the elevation of the terrain can be described by the function

$$f(x) = 32 - 2(x - 3)^2$$

where both *x* and f(x) are measured in metres.

(i) Find the co-ordinates of A and B.

	f(x)	=	32 - 2(x - 3) 14	$)^{2}$			
\Rightarrow	$32 - 2(x - 3)^2$	=	14				
\Rightarrow	$2(x-3)^2$	=	32 - 14				
		=	18				
\Rightarrow	$(x-3)^2$	=	$\frac{18}{2}$				
		=	9				
\Rightarrow	x - 3	=	$\sqrt{9}$				
\Rightarrow	x - 3	=	-3	\Rightarrow	x - 3	=	3
\Rightarrow	х	=	-3 + 3		x	=	3 + 3
		=	0			=	6
\Rightarrow	A	=	(0, 14)	\Rightarrow	В	=	(6, 14)

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> equates $32 - 2(x - 3)^2 = 14$ or similar <u>and stops</u> .
High partial credit: (4 marks)	_	Finds only one value of x correctly and hence finds only co-ordinates of A or B . Finds both values of x correctly, but fails to give co-ordinates of A and B .

(5C)

Question 9 (cont'd.)

9(b) (cont'd.)

(ii) Use the trapezoidal rule and interval widths of 1 m to find the approximate area of the shaded cross-section of earth material to be excavated between the elevation of the terrain and the proposed elevation of the roadway.

=

f(x)

(5C*)

	x	0	1	2	3	4	5	6	
	y = f(x)	14	24	30	32	30	24	14	
0	Area unde	r curve							
			=	$\frac{h}{2}$ [)	$y_1 + y_n - y_n $	+ 2(y ₂ +	$-y_3 + y_2$	4 + +	$(y_{n-1})]$
									+ 30 + 24)]
			=	(0.5	5)[28 +	2(140)	1		
				(0·:			-		
				(0·:					
			=		m ²				
0	Shaded are	ea	=	Are	a abov		a of rec <i>x</i> -axis	tangul	ar box between $y = 14$
			=	154	- (6 ×	14)			
				154		,			
			=	70	m ²				
* (0, 2, 3, 4, 5)	Low part	ial crec	lit: (2 n	narks)	_	An	y work	of mer	it, e.g. writes down

 $32 - 2(x - 3)^2$

Scale 5C* (0, 2, 3, 4, 5)	Low partial credit: (2 marks)	_	Any work of merit, <i>e.g.</i> writes down correct formula for trapezoidal rule with some correct substitution <u>and stops</u> . Finds $f(x)$ for $x = 1, 2, 3, 4, 5, 6$ <u>and stops</u> .	
	Mid partial credit: (3 marks)	_	Fully correct substitution into trapezoidal rule, but fails to find correct value for area under the curve.	
	High partial credit: (4 marks)	_	Finds correct area under curve but fails to finish or finishes incorrectly.	

Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect units
 apply only once throughout the question.

9(b)

(cont'd.) Use integration to find the actual area of the shaded cross-section. (10D*) (iii) 0 Actual area under curve of y = f(x) $\int_{-6}^{6} f(x) \, dx$ $32 - 2(x - 3)^{2}$ $32 - 2(x^{2} - 6x + 9)$ $-2x^{2} + 12x + 32 - 18$ $-2x^{2} + 12x + 14$ f(x)= = = = Actual area under curve of y = f(x) $\int_{-2x^2}^{0} (-2x^2 + 12x + 14) \, dx$ = $-\frac{2x^3}{3} + \frac{12x^2}{2} + 14x \Big|_{0}^{6}$ = $-\frac{2}{3}(6)^3 + 6(6)^2 + 14(6) - 0$ = -144 + 216 + 84= -144 + 216 + 84156 m² = = 0 Shaded area Area above – Area of rectangular box between y = 14= and *x*-axis $156 - (6 \times 14)$ = = 156 - 84... from part (b)(ii) 72 m^2 = ** Accept students' answers from part (b)(ii) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> simplifies correctly $f(x) = -2x^2 + 12x + 14$ or gives area = $\int_{0}^{6} [32 - 2(x - 3)^2] dx$ and stops.
	Mid partial credit: (6 marks)	_	Simplifies and integrates $f(x)$ correctly, but fails to evaluate <u>or</u> evaluates incorrectly <u>or</u> evaluates using incorrect limits.
	High partial credit: (8 marks)	_	Finds correct area under curve but fails to finish <u>or</u> finishes incorrectly.

Deduct 1 mark off correct answer only **0** if final answer(s) are not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('m')
 apply only once to each section (a), (b), (c), *etc.* of question.

(10D*)

9(c) An alternative proposal is to construct the new roadway at an elevation of 24 m above sea-level. Find, correct to two decimal places, the percentage reduction in the cross-section of material to be excavated if this proposal was adopted.

> $32-2(x-3)^2$ f(x)f(x)24 = y = 24 $\frac{32 - 2(x - 3)^2}{2(x - 3)^2}$ = 24 \Rightarrow y = 14= 32 - 24 \Rightarrow = 8 $(x-3)^2$ = 4 \Rightarrow $\sqrt{4}$ x - 3= \Rightarrow -2 x - 3= x - 32 \Rightarrow \Rightarrow = -2 + 32 + 3= = \Rightarrow x х 5

0

0

Area under curve of y = f(x) above y = 24

$$= \int_{1}^{5} f(x) dx - [24 \times (5-1)]$$

$$= \int_{1}^{5} (-2x^{2} + 12x + 14) dx - 96 \qquad \dots \text{ from part (b)(iii)}$$

$$= -\frac{2x^{3}}{3} + \frac{12x^{2}}{2} + 14x \Big|_{1}^{5} - 96$$

$$= -\frac{2}{3}(5)^{3} + 6(5)^{2} + 14(5) - [-\frac{2}{3}(1)^{3} + 6(1)^{2} + 14(1)] - 96$$

$$= -\frac{250}{3} + 150 + 70 + \frac{2}{3} - 6 - 14 - 96$$

$$= 104 - \frac{248}{3}$$

$$= \frac{312 - 248}{3}$$

$$= \frac{64}{3} \text{ m}^{2}$$

€

Percentage reduction in excavated material

% Reduction =
$$\frac{72 - \frac{04}{3}}{72} \times \frac{100}{1}$$

= $\frac{\frac{152}{3}}{72} \times \frac{100}{1}$
= $70.370370...$
 $\approx 70.37\%$

** Accept students' answers from part (b)(ii) if not oversimplified.

61

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> equates $32 - 2(x - 3)^2 = 24$ with work towards finding values of <i>x</i> .
	Mid partial credit: (6 marks)	_	Simplifies and integrates $f(x)$ correctly, with some substitution of limits, but fails to evaluates correctly <u>or</u> evaluates using incorrect limits.
	High partial credit: (8 marks)	_	Finds correct area under curve but fails to find <u>or</u> finishes incorrect % reduction.

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once in each section (a), (b), (c), *etc.* of question.

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level – Paper 2 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.

These scales and the marks that they generate are summarised in the following table:

Scale label	Α	В	С	D
No. of categories	2	3	4	5
5 mark scale		0, 2, 5	0, 2, 4, 5	0, 2, 3, 4, 5
10 mark scale			0, 4, 7, 10	0, 4, 6, 8, 10
15 mark scale				0, 6, 10, 13, 15

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving ① incorrect rounding, ② omission of units, ③ a misreading that does not oversimplify the work <u>or</u> ③ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale 10C* indicates that 9 marks may be awarded.

Thus, for example, scale for indicates that γ marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only **within each section (a), (b), (c),** *etc.* of all questions.
- The * penalty is not applied to currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.

Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Summary of Marks – 2017 LC Maths (Higher Level, Paper 2)

Q.1	(a) (b) (c)		10D (0, 4, 6, 8, 10) 10D (0, 4, 6, 8, 10) 5B (0, 2, 5)		Q.7	(a)	(i) (ii) (iii)	5B (0, 2, 5) 10C (0, 4, 7, 10) 5C (0, 2, 4, 5)	
	<u>(t)</u>		50 (0, 2, 5)	25		(b)	(ii) (ii) (iii)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5) $10D^* (0, 4, 6, 8, 10)$ $5C^* (0, 2, 4, 5)$	
Q.2	(a)	(i)	10D (0, 4, 6, 8, 10)			(c)	()	10D* (0, 4, 6, 8, 10)	
	(L)	(ii)	5C (0, 2, 4, 5)						50
	(b)	(i) (ii)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5)						
		(11)	00(0,2,1,0)	25					
					Q.8	(a)	(i)	5C (0, 2, 4, 5)	
0.1	()						(ii)	10C (0, 4, 7, 10)	
Q.3	(a) (b)		5C(0, 2, 4, 5)			(b)	(i)	15D (0, 6, 10, 13, 15)	
	(b) (c)		10D (0, 4, 6, 8, 10) 10D (0, 4, 6, 8, 10)			(c)	(ii) (i)	5C (0, 2, 4, 5) 10D (0, 4, 6, 8, 10)	
	(0)		10D (0, 4, 0, 8, 10)	25		(0)	(i) (ii)	5D (0, 2, 3, 4, 5)	
				-0			(11)	50 (0, 2, 5, 1, 5)	50
0.4	(a)		5C(0, 2, 4, 5)						
Q.4	(a)	(i) (ii)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5)						
		(iii)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5)		Q.9	(a)	(i)	10C (0, 4, 7, 10)	
	(b)	(111)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5)		Q.)	(<i>a</i>)	(i) (ii)	л <i>(, , , , , , , , , , , , , , , , , , ,</i>	
	(c) (c)		5C (0, 2, 4, 5) 5C (0, 2, 4, 5)				(iii)	5C (0, 2, 4, 5)	
				25			(iv)	10C (0, 4, 7, 10)	
						(b)		15D (0, 6, 10, 13, 15)	
						(c)		10D (0, 4, 6, 8, 10)	
Q.5	(a)		5C (0, 2, 4, 5)						50
	(b)	(i)	5C (0, 2, 4, 5)						
		(ii)	10D (0, 4, 6, 8, 10)						
	(c)		5D (0, 2, 3, 4, 5)						
				25					
Q.6	(a)	(i)	5D* (0, 2, 3, 4, 5)						
Q.0	(a)	(i) (ii)	$10D^*(0, 2, 3, 4, 5)$						
	(b)	(i)	5C (0, 2, 4, 5)						
	(~)	(ii)	5C (0, 2, 4, 5)						
				25					

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all questions.

Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Answers should be given in simplest form, where relevant.

Pre-Leaving Certificate Examination, 2017

Mathematics

Higher Level – Paper 2 Marking Scheme (300 marks)

Section A

Concepts and Skills

150 marks

Answer all six questions from this section.

Question 1

(25 marks)

(10D)

x

Two points P(-4, -7) and Q(1, 3) lie on opposite sides of the line l: 2x + y + 7 = 0.

1(a) Calculate the ratio of the shortest distances from *P* and *Q* to line *l*.

$$|d_{\min}| = \frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2} + b^{2}}}$$

$$P(-4, -7), \ l: 2x + y + 4 = 0$$

$$\Rightarrow |Pl_{\min}| = \frac{|2(-4) + 1(-7) + 7|}{\sqrt{(2)^{2} + (1)^{2}}}$$

$$= \frac{|-8 - 7 + 7|}{\sqrt{4 + 1}}$$

$$= \frac{8}{\sqrt{5}}$$

$$Q(1, 3), \ l: 2x + y + 7 = 0$$

$$\Rightarrow |Ql_{\min}| = \frac{|2(1) + 1(3) + 7|}{\sqrt{(2)^{2} + (1)^{2}}}$$

$$= \frac{|2 + 3 + 7|}{\sqrt{4 + 1}}$$

$$= \frac{12}{\sqrt{5}}$$

$$\Rightarrow |Pl_{\min}| : |Ql_{\min}| = \frac{8}{\sqrt{5}} : \frac{12}{\sqrt{5}}$$

$$= 8 : 12$$

$$= 2 : 3$$

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down shortest distance = \perp distance with formula stated. Some correct substitution into formula for \perp distance (<i>a</i> , <i>b</i> , <i>c</i> identified).
	Mid partial credit: (6 marks)	-	Finds correct $ Pl_{\min} \underline{or} Ql_{\min} $.
	High partial credit: (8 marks)	_	Finds both $ Pl_{\min} \underline{or} Ql_{\min} $, but fails to finish <u>or</u> finishes incorrectly.

1(b)	Calculate the	ratio o	of the di	stances from <i>P</i> and <i>Q</i>	2 to line	l along the line [PQ]. (101)	D)
		0		$\frac{\text{Slope of } PQ}{P(-4, -7), \ Q(1, 3)}$			
			\Rightarrow	т	=	$\frac{y_2 - y_1}{x_2 - x_1}$	
			\Rightarrow	m_{PQ} (slope of PQ)			
					=	$\frac{10}{1}$	
					=	5 2	
		0		Equation of PQ $Q(1, 3), m_{PQ} = 2$			
				$y - y_1$	=	$m(x-x_1)$	
			\Rightarrow \Rightarrow	$\begin{array}{l} y - (3) \\ y - 3 \end{array}$	=	$\frac{2(x-1)}{2x-2}$	
			\Rightarrow	$ \begin{array}{l} \underline{y} = y_1 \\ $	=	-3+2 -1	
		€		<u> PQ ∩ l</u>			
				$\begin{array}{rcl} 2x + y & = \\ \underline{2x - y} & = \\ 4x & = \end{array}$	-/ -1		
			\Rightarrow \Rightarrow	<i>x</i> =	-2		
			\Rightarrow	2x + y = 2(-2) + y =	-7 -7	$ \underbrace{\text{or}}_{\Rightarrow} 2x - y = -1 \Rightarrow 2(-2) - y = -1 $	
			\Rightarrow	<i>y</i> = = =	-7 + 4 -3	4 $\begin{array}{cccc} \underline{\text{or}} & 2x - y & = & -1 \\ \Rightarrow & 2(-2) - y & = & -1 \\ \Rightarrow & -y & = & -1 + 4 \\ & = & 3 \end{array}$	
			\Rightarrow	point of intersctoion		\Rightarrow $y = -3$	
		4		Distances PR and			
			\Rightarrow	d		$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
			\Rightarrow	P(-4, -7), R(-2, -3) <i>PR</i>	=	$\sqrt{(-2 - (-4))^2 + (-3 - (-7))^2}$	
					=	$\sqrt{(2)^2 + (4)^2}$	
						$\frac{\sqrt{20}}{2\sqrt{5}}$	
				Q(1,3), R(-2,-3)			
			\Rightarrow	QR		$\sqrt{(-2-1)^2 + (-3-3)^2}$	
						$\sqrt{(-3)^2 + (-6)^2}$ $\sqrt{45}$	
					=		
		6		<u>Ratio</u>			
				PR : $ QR $	=	$2\sqrt{5}: 3\sqrt{5}$ 2:3	

1(b) (cont'd.)

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)		Any relevant first step, <i>e.g.</i> writes down correct relevant formula for slope, equation of a line <u>or</u> distance. Finds correct slope of PQ and stops. Finds incorrect slope of PQ and some correct substitution into the formula for the equation of the line PQ .
	Mid partial credit: (6 marks)	_	Finds correct equation for PQ and stops. Finds incorrect equation for PQ and continues with substantial work towards finding point of intersection of PQ and l .
	High partial credit: (8 marks)	_	Finds correct point of intersection of PQ and l and continues with substantial work towards finding distances of P and Q to l. Finds correct distances of P and Q to l, but fails to finish or finishes incorrectly, e.g. $ PR : QR = \sqrt{20} : \sqrt{45}$.

1(c) What conclusion can you draw from your answers to parts (a) and (b) above? Explain your answer with reference to a geometric theorem on your course.

0		Conclusion			↓ ν
	as	$ Pl_{\min} $: $ Ql_{\min} $	=	2:3	$\backslash l$
	⇒	$\frac{ QM }{ PN }$	=	$\frac{3}{2}$	
	and	PR : $ QR $	=	2:2	$R \times _{N}$
	⇒	$\frac{ QR }{ PR }$	=	$\frac{3}{2}$	P •
	⇒	ΔQMR and ΔPNR	are sim	ilar (equiangular)	
0		Geometric theorem			
			-	if two triangles are similar sides are in proportion (Th	r, then their corresponding neorem 13)
		** Accept stude	ents' an	swers from parts (a) and (b)) if not oversimplified.
Scale 5B (0, 2, 5)		Partial credit: (2 n	narks)	5	nt first step, <i>e.g.</i> mentions agles <u>and stops</u> .

(5B)

2(a)	(i) Prove that $\cos(A - B)$	$B) = \cos A \cos B + \sin A \sin B.$	(10D)
		s is a circle with centre $O(0, 0)$ and radius 1 $P(\cos B, \sin B)$	
		Let $P(\cos A, \sin A)$ be any point on the circle such that $[OP]$ makes an angle A with the positive sense of the x-axis	$Q(\cos B, \sin B)$
		Let $Q(\cos B, \sin B)$ be another point on the circle such that $[OQ]$ makes an angle B with the positive sense of the x-axis	,0)
	0	Using distance formula:	
	\Rightarrow	$ PQ = \sqrt{(\cos A - \cos B)^2 + (\sin A - \sin B)^2}$	
	\Rightarrow	$ PQ ^{2} = (\cos A - \cos B)^{2} + (\sin A - \sin B)^{2}$ = $\cos^{2}A - 2\cos A \cos B - \cos^{2}B + \sin^{2}A - 2s$ = $(\cos^{2}A + \sin^{2}A) + (\cos^{2}B + \sin^{2}B) - 2[\cos B + \sin A \sin B]$ = $2 - 2[\cos A \cos B + \sin A \sin B]$	$\frac{\mathrm{in}A\sin B - \sin^2 B}{A\cos B + \sin A\sin B}$
	0	Using cosine rule:	
	$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	$ \begin{array}{ll} a^{2} & = & b^{2} + c^{2} - 2bc \cos A \\ PQ ^{2} & = & OP ^{2} + OQ ^{2} - 2 OP . OQ \cos \angle POQ \\ PQ ^{2} & = & 1^{2} + 1^{2} - 2(1)(1) \cos (A - B) \end{array} $	<u>)</u>
	-	$= 2 - 2\cos(A - B)$	
	€	Equating results from 0 and 0 : $2-2\cos(A-B) = 2-2[\cos A \cos B + \sin A \sin B]$	
	\Rightarrow	$2 \cos (A - B) = 2[\cos A \cos B + \sin A \sin B]$	
	\Rightarrow	$\cos(A - B) = \cos A \cos B + \sin A \sin B$	
Scale 10D (0, 4, 6, 8, 10)		Low partial credit: (4 marks) – Any relevant first step, <i>e.g.</i> diagram with co-ordinates of indictaed <u>and stops</u> . – Some correct substitution in distance formula <u>or</u> cosine	of P and/or Q nto either
		Mid partial credit: (6 marks) – Finds one correct expression or PQ .	n for $ PQ ^2$
		 Some correct substitution in distance formula <u>and</u> cosine incomplete. 	
		High partial credit: (8 marks) - Finds correct both expression and PQ , but fails to finish incorrectly. - Proof complete with one cr omitted or incorrect.	n <u>or</u> finishes

or continues incorrectly.

finish or finishes incorrectly.

Question 2 (cont'd.)

(ii) Hence, show that c	os $15^\circ = \frac{\sqrt{2} + \sqrt{6}}{4}$, without using	a calculator. (5C)
	$cos (A - B) = $ $cos 15^{\circ} = $ $= $ $= $ $= $	$\cos A \cos B + 2\sin A \sin B$ $\cos (60^{\circ} - 45^{\circ})$ $\cos 60^{\circ} \cos 45^{\circ} + \sin 45^{\circ} \sin 45^{\circ}$ $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$ $\frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2} + \sqrt{6}}{4}$
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	 Any relevant first step, <i>e.g.</i> identifies angles A = 60° and B = 45° or A = 45° and B = 30°. Finds cos 15° = cos (60° - 45°) and stops.
	High partial credit: (4 marks)	- Finds $\cos 15^\circ = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$, <u>or equivalent</u> , but fails to finish <u>or finishes incorrectly</u> . - Finds $\cos 15^\circ = \frac{1 + \sqrt{3}}{2\sqrt{2}}$ <u>and stops</u>

(b)	(i) Given that cos(A	$(-B) = 2\cos(A+B)$, show the	at 3tan A	$A = \frac{1}{\tan B}.$ (5C)
	0	$\cos(A-B)$	=	$\cos A \cos B + \sin A \sin B$ from part (a)(i)
	0	cos (A + B) 2cos (A + B)	= = =	$\cos A \cos B - \sin A \sin B$ 2(\cos A \cos B - \sin A \sin B) 2\cos A \cos B - 2\sin A \sin B
	€ ⇒ ⇒	Equating results from \bigcirc a $\cos A \cos B + \sin A \sin B$ $3\sin A \sin B$ $3\frac{\sin A \sin B}{\cos A \cos B}$ $3\tan A \tan B$ $3\tan A$	and 2 : = = = = =	$2\cos A \cos B - 2\sin A \sin B$ $\cos A \cos B$ 1 $\frac{1}{\tan B}$
Scale 5C (0, 2, 4, 5)		Low partial credit: (2 m High partial credit: (4 m		 Any relevant first step, <i>e.g.</i> expands 2cos (A + B) correctly and stops. Equates correctly both sides, <i>i.e.</i> finds 3sin A sin B = cos A cos B, but fails to

Question 2 (cont'd.)

2(b) (cont'd.)

(cont [*]	'd.)				
(ii)	Hence, solve the equ	ation $\cos(\theta - \frac{\pi}{6}) =$	= 2cos(6	$\theta + \frac{\pi}{6}$), where 0	$\leq \theta \leq 2\pi.$ (5C)
	For	$\cos(A-B)$ 3tan A	=	$\frac{2\cos(A+B)}{\tan B}$	from part (b)(i)
		Let $A = \theta$ and $B =$		tan B	nom part (0)(1)
			0	1	
	\Rightarrow	3 an heta	=	$\frac{1}{\tan\frac{\pi}{6}}$	
			=	$\frac{1}{1}$.	
			=	$\sqrt{3}$ $\sqrt{3}$	
	\Rightarrow	$\tan \theta$	=	$\frac{1}{\frac{1}{\sqrt{3}}}$ $\frac{\sqrt{3}}{\frac{\sqrt{3}}{3}}$ $\frac{1}{\sqrt{3}}$	<u>↓</u> y
					$-\frac{\sin All}{\tan \cos} x$
	\Rightarrow	heta	=	$\tan^{-1}\frac{1}{\sqrt{3}}$	
		as $0 \le \theta \le 2\pi$.		π	
		θ		$30^{\circ} \text{ or } \frac{\pi}{6}$	1st quadrant
	and	heta	=	$\frac{180^\circ + 30^\circ}{210^\circ \text{ or }} \frac{71}{6}$	τ 3rd quadrant
				<u> </u>	910 quadrant
Scale	5C (0, 2, 4, 5)	Low partial cred	lit: (2 m	arks) –	Any relevant first step, <i>e.g.</i> writes down π
					$A = \theta \operatorname{and/or} B = \frac{\pi}{6} \operatorname{and stops}.$
				_	Finds $3\tan\theta = \frac{1}{\tan\pi} \frac{\text{and stops}}{1}$
					$\frac{\tan -6}{6}$
					or continues incorrectly.
		High partial cree	dit: (4 m	arks) –	Finds $\tan \theta = \frac{\sqrt{3}}{3} \text{ or } \frac{1}{\sqrt{3}}$, but fails to
					finish <u>or</u> finishes incorrectly. Finds one solution only.
					i mus one solution only.

Circle s: $x^2 + y^2 + 2gx + 2fy + c = 0$ touches the *y*-axis at the point A(0, -2).

3(a) Write down the value of f and hence, show that c is equal to 4.

$$\begin{array}{cccc} \bullet & s: x^2 + y^2 + 2gx + 2fy + c = 0 \text{ with centre } (-g, -f) \\ & as y-axis is a tangent at $A(0, -2) \\ \Rightarrow & centre lies on the line y = -2 \\ \Rightarrow & -f & = & -2 \\ \Rightarrow & f & = & 2 \end{array}$

$$\begin{array}{cccc} \bullet & A(0, -2) \in s: x^2 + y^2 + 2gx + 2fy + c = 0 \\ \Rightarrow & 0^2 + (-2)^2 + 2g(0) + 2(2)(-2) + c = 0 \\ \Rightarrow & 0^2 + (-2)^2 + 2g(0) + 2(2)(-2) + c = 0 \\ \Rightarrow & c & = & 8 - 4 \\ = & 4 \end{array}$$
Scale 5C (0, 2, 4, 5)
$$\begin{array}{cccc} Low partial credit: (2 marks) & - & Any relevant first step, e.g. substitute \\ A(0, -2) into s but fails to find correct. \end{array}$$$$

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> substitutes $A(0, -2)$ into <i>s</i> , but fails to find correct value of <i>f</i> [ans. $4 - 4f + c = 0$]. Finds $f = 2$ and stops.
High partial credit: (4 marks)	_	Finds $f = 2$ and substitutes $A(0, -2)$ into a but fails to finish <u>or</u> finishes incorrectly. Finds $f = -2$ and substitutes $A(0, -2)$ into s and finishes correctly [ans. $c = 12$].

3(b) The centre of *s* lies in the third quadrant and *s* makes a chord of length $4\sqrt{3}$ on the *x*-axis. Find the value of *g* and hence, write down the equation of *s*.

0 Let [PQ] be the chord of circle on the x-axis $4\sqrt{3}$ |PQ|= \Rightarrow x $2\sqrt{3}$ 2 1 Using Pythagoras' theorem $(2)^{2} + \left(\frac{4\sqrt{3}}{2}\right)$ (-g, -2)A(0, -2) r^2 = $4 + (2\sqrt{3})^2$ = 4 + 12= = 16 = 4 r s: $x^2 + y^2 + 2gx + 2fy + c = 0$ has centre (-g, -f) and radius r 0 $\sqrt{g^2+f^2-c}$ = r \Rightarrow $g^{2} + f^{2} - c$ $g^{2} + (-2)^{2} - 4$ $g^{2} + 4 - 4$ r^2 = \Rightarrow 4^{2} = \Rightarrow = 16 \Rightarrow g^2 = $\sqrt{16}$ = \Rightarrow g ±4 = as centre of circle lies in 3rd quadrant [centre (-g, -f)] \Rightarrow = 4 g $s: x^2 + y^2 + 2gx + 2fy + c = 0$ € centre (-g, -f) = (-4, -2)c = 4 s: $x^2 + y^2 + 2(4)x + 2(2)y + 4 = 0$ s: $x^2 + y^2 + 8x + 4y + 4 = 0$ \Rightarrow \Rightarrow Accept students' answers from parts (a) if not oversimplified. ** Scale 10D (0, 4, 6, 8, 10) Low partial credit: (4 marks) _ Any relevant first step, *e.g.* some correct

		use of Pythagoras' theorem with 2 and $2\sqrt{3}$, but fails to find correct value of <i>r</i> .
Mid partial credit: (6 marks)	_	Finds $r = 4$ and substitutes into formula $r = \sqrt{g^2 + f^2 - c}$ or $r^2 = g^2 + f^2 - c$, but fails to find correct value of g.
High partial credit: (8 marks)	_	Finds $g = 4$, but fails to find <u>or</u> finds incorrect equation of <i>s</i> . Finds $g = -4$ and finishes correctly [ans. $c = 12$].

3(c) Find the equations of the two tangents from the origin to *s*.

		U	0		(
0		Equation of first tar	ngent		
		y-axis passes throug	-) and is a tange	ent to s at $A(0 = 2)$
	\rightarrow	$t_1: x =$	0) and is a tange	
	\rightarrow	<i>i</i>]. <i>x</i>	0		
0		Equation of second	tangen	<u>t</u>	
		point (0, 0), slope <i>n</i>	-	_	
		$y - y_1$		$m(x-x_1)$	
	\rightarrow	y - 0	_	m(x - 0)	
			_	m(x-0) mx	
	ή ή ή	<i>y</i>	=	0	
	\rightarrow	t_2 : $mx - y$	_	0	
€		<u>⊥distance from cen</u>	tre of c	ircle to tangen	t
•		centre of $s(-4, -2)$,		in one to tungon	<u>-</u>
				4	
	\Rightarrow	\perp distance to t_2			
		Perpendicular distan			v_1) to line $ax + by + c = 0$
		d	=	$ ax_1+by_1+a $	
			_	$\frac{ ax_1+by_1+a }{\sqrt{a^2+b^2}}$	_
				v	
	⇒	4	=	$\frac{ m(-4) - (-2) }{\sqrt{(m)^2 + (-2)^2}}$	$\frac{2}{2} + \frac{6}{2}$
				$\sqrt{(m)^2 + (-)^2}$	$(-1)^2$
				-4m+2	
			=	$\frac{ -4m+2 }{\sqrt{m^2+1}}$	
				•	
	⇒	$4\sqrt{m^{2} + 1} 4^{2}(m^{2} + 1) 16m^{2} + 16$	=	-4m+2	
	→	$4^{2}(m^{2}+1)$	=	$(-4m+2)^2$	
	\rightarrow	$16m^2 + 16$	=	$16m^2 - 16m$	$+ \Delta$
	, ⇒	16 <i>m</i>	=	4 – 16	
	-	1011		-12	
				12	
	⇒	т	=	$-\frac{1}{16}$	
				3	
			=	$-\frac{12}{16}$ $-\frac{3}{4}$	
				4	
4		Equation of t_2 : mx –	-y=0		
	\Rightarrow	$-\frac{3}{4}x-y$	=	0	
		4			
	\rightarrow	$t_2: y = -\frac{3}{4}x \text{ or } 3x$	+4v =	0	
	\rightarrow	$4^{12. y}$ 4^{x} $\underline{01}$ $5x$	iy	0	
		** Accept stude		c	
		** Accept stude	ents' an	swers from pa	rts (a) and (b) if not oversimplified.
, 4, 6,	8, 10)	Low partial credit	: (4 mai	rks) –	Any relevant first step, e.g. writes down
, , -,	,,	1		,	formula for \perp distance and stops.
					Substitutes $(0, 0)$ correctly into equation
					of a line to find t_2 , <i>i.e.</i> $y - 0 = m(x - 0)$
					and stops.
				_	Finds t_1 : $x = 0$ and stops.

** Award full marks for t_1 : x = 0 and t_2 : $m = -\frac{3}{4}$.

Scale 10D (0, 4, 6, 8, 10)

Mid partial credit: (6 marks)

DEB exams

Substitutes fully into \perp distance formula, *i.e.* $4 = \frac{|m(-4) - (-2) + 0|}{\sqrt{(m)^2 + (-1)^2}}$, but fails to

find correct value of *m*.

(10D)

Pat and Mark are playing against each other in a darts match. The winner is the first player to win two of three <i>legs</i> (games). Pat is a better player and the probability of him winning an individual leg against Mark is $\frac{3}{5}$. 4(a) (i) Find the probability that Pat wins the match after just two legs. (5C)					
	$P(\text{Pat wins}) = \frac{3}{5}$				
	$P(\text{Pat wins the match after just two legs}) = P(\text{Pat wins 1st leg}) + P(\text{Pat wins 2nd leg})$ $= \frac{3}{5} \times \frac{3}{5}$ $= \frac{9}{25} \text{ or } 0.36$				
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks) – Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that Pats wins after 2 legs, <i>e.g.</i> ' <i>P</i> (wins 1st leg) + <i>P</i> (wins 2nd leg)'. – Correct probabilities chosen, but incorrect operator used.				
	High partial credit: (4 marks)-Correct probabilities chosen and correct operator, <i>i.e.</i> $P(\text{wins}) = \frac{3}{5} \times \frac{3}{5}$, but fails to express as a single fraction or equivalent.				

(ii) Find the probability that Pat wins the match.

 \Rightarrow

$$P(\text{Pat wins)} = \frac{3}{5}$$

$$P(\text{Mark wins)} = 1 - \frac{3}{5}$$

$$= \frac{2}{5}$$

$$P(\text{Pat wins the match})$$

$$P(\text{Pat wins the match})$$

$$= P(\text{Pat wins in 2 legs}) + P(\text{Pat wins in 3 legs})$$

$$= \frac{9}{25} + \left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right) + \left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}\right)$$

$$= \frac{9}{25} + \frac{18}{125} + \frac{18}{125}$$

$$= \frac{81}{125} \text{ or } 0.648$$

** Accept students' answers from part (a)(i) if not oversimplified.

0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that Pat wins in 3 legs, <i>e.g.</i> 'P(W × L × W)' <u>or</u> 'P(L × W × W)'. Finds one correct probability of winning in 3 legs, <i>i.e.</i> $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right) \underline{\text{or}}\left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}\right)$.
	High partial credit: (4 marks)	_	Finds all probabilities and operators correct, <i>i.e.</i> $\frac{9}{25} + \left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right) + \left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}\right)$, but fails to express result as a single fraction <u>or equivalent</u> .

Scale 5C (0, 2, 4, 5)

(5C)

4(a) (cont'd.)

(iii) Find the probability that Pat wins exactly one leg.

$$P(\text{Pat wins}) = \frac{3}{5}$$

$$\Rightarrow P(\text{Mark wins}) = \frac{2}{5}$$

P(Pat wins exactly one leg)

- = P(Pat wins first leg only) or P(Pat wins 2nd leg only) $= \left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right) + \left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$ $= \frac{12}{125} + \frac{12}{125}$ $= \frac{24}{125} \text{ or } 0.192$
- ** Explanation: Pat must win either the first or second leg of the match as it will be over if Mark wins the first two legs (no requirement to play the third leg).

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that Pat wins only 1 leg, <i>e.g.</i> ' $P(W \times L \times L)$ ' <u>or</u> ' $P(L \times W \times L)$ '. Finds one correct probability of winning 1 leg, <i>i.e.</i> $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right) \underline{or} \left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$.
High partial credit: (4 marks)	_	Finds all probabilities and operators correct, <i>i.e.</i> $\frac{9}{25} + \left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right) + \left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$, but fails to express result as a single fraction <u>or equivalent</u> .

(5C)

4(b) Find the probability that the match requires three legs to decide the winner.

P(match requires three legs)

$$= 1 - [P(\text{Pat wins after 2 legs}) + P(\text{Mark wins after 2 legs})]$$

$$= 1 - \left(\frac{3}{5} \times \frac{3}{5}\right) - \left(\frac{2}{5} \times \frac{2}{5}\right)$$

$$= 1 - \frac{9}{25} - \frac{4}{25}$$

$$= \frac{12}{25} \text{ or } 0.48$$

** Accept students' answers from part (a)(i) if not oversimplified.

Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that match requires 3 legs, <i>e.g.</i> '1 – <i>P</i> (Pat <u>and/or</u> Mark wins after 2 legs)'. Finds one correct probability of winning 1 leg, <i>i.e.</i> $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}\right) \underline{\text{or}} \left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}\right)$.
	High partial credit: (4 marks)	_	Finds all probabilities and operators correct, <i>i.e.</i> $1 - \left(\frac{3}{5} \times \frac{3}{5}\right) - \left(\frac{2}{5} \times \frac{2}{5}\right)$, but fails to express result as a single fraction <u>or equivalent</u> .

(c) Given that Pat wins the match, find the probability that he wins the first leg.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow P(\text{Pat wins first leg}|\text{Pat wins the match})$$

$$= \frac{\frac{9}{25} + \frac{18}{125}}{\frac{81}{125}}$$

$$= \frac{63}{125} \times \frac{125}{81}$$

$$= \frac{63}{81} \text{ or } \frac{7}{9} \text{ or } 0.777777...$$

** Accept students' answers from parts (a)(i) and (a)(ii) if not oversimplified.

ale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down explanation of <u>or</u> defines conditional probability, <i>i.e.</i> $P(A B) = \frac{P(A \cap B)}{P(B)}$. Finds $P(\text{Pat wins first leg and wins match}),$ <i>i.e.</i> $\left(\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}\right) + \left(\frac{3}{5} \times \frac{3}{5}\right)$.
	High partial credit: (4 marks)		Finds all probabilities and operators correct, <i>i.e.</i> $\left(\frac{9}{25} \times \frac{18}{125}\right) / \frac{81}{125}$, but fails to express result as a single fraction <u>or equivalent</u> .

Scal

In the standard game of poker, each player receives five cards, called a *hand*. The player with the best hand, the best combination of cards, is the winner. The game is normally played with a pack consisting of 52 cards in four suits:

13 hearts (♥)	:	2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
13 diamonds ()	:	2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
13 clubs (♣)	:	2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
13 spades (🌢)	:	2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

5(a) (i) Find the number of possible hands a player can receive.

# hands	=	$\begin{pmatrix} 52\\5 \end{pmatrix}$
	=	${}^{52}C_5$
	=	$\frac{52!}{5!(52-5)!}$
	=	2,598,960

Scale 5C (0, 2, 4, 5)

Scale 5C (0,

Low partial credit: (2 marks)		Any relevant first step, <i>e.g.</i> writes down
Low partial credit. (2 marks)	_	'# hands = $\binom{52}{5}$ or ${}^{52}C_5$ ' and stops.
	_	Writes downs <u>or</u> evaluates correctly ${}^{52}P_5$, <i>i.e.</i> 52 × 51 × 50 × 49 × 48 <u>or</u> 311,875,200.
High partial credit: (4 marks)	_	Finds $\frac{52!}{5!(52-5)!}$, but fails to evaluate
		or evaluates incorrectly.

5(b)	(i)	The best hand is a 'royal flush', which consists of 10, J, Q, K, A of the same suit.
		Find the probability of a royal flush, as a fraction.

(5C)

	= _	$\frac{1}{2,598,960} \times \frac{1}{49,740}$	4
, 2, 4, 5)	Low partial credit: (2 marks)) –	Any relevant first step, <i>e.g.</i> writes down '4 different royal flushes' <u>and stops</u> . Writes down $\frac{1}{52} \times \frac{1}{51} \times \frac{1}{50} \times \frac{1}{49} \times \frac{1}{48} \times 4$ <u>or</u> evaluates correctly [ans. $\frac{4}{311,875,200}$ <u>or</u> $\frac{1}{77,968,800}$]. Writes down $\frac{1}{2,598,960}$ <u>and stops</u> .
	High partial credit: (4 marks) _	Finds $\frac{4}{2,598,960}$ or equivalent, but fails
			to express in its singlest form.

(10D)

5(b) (cont'd.)

(ii) The next most valuable hand is a 'straight flush', which is five cards in sequential order, all of the same suit. As part of a straight flush, an ace can rank either above a King or below a 2 (e.g. 7, 8, 9, 10, J or A, 2, 3, 4, 5 is a straight flush).

List all the ways that a straight flush can be achieved in the same suit and hence, find the probability of a straight flush. Give your answer as a fraction.

0	List ways to achiev	ved strai	ight flush (same suit)
	Straight flush	_	A, 2, 3, 4, 5
		_	2, 3, 4, 5, 6
		-	3, 4, 5, 6, 7
		_	4, 5, 6, 7, 8
			5, 6, 7, 8, 9 × 9
		-	6, 7, 8, 9, 10
		-	7, 8, 9, 10, J
		-	8, 9, 10, J, Q
		_	9, 10, J, Q, K
		_	10, J, Q, K, A] Excluded as hand is a 'royal flush'
0	P(Straight flush)	=	$\frac{9}{2,598,960} \times 4$
		=	<u>36</u> 2,598,960
		=	$\frac{3}{216,580}$

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down at least 5 ways in which a straight flush can be achieved.
	Mid partial credit: (6 marks)	_	Lists all <u>nine</u> ways in which a straight flush can be achieved. Fails to list ways to achieve straight flush, but finds $P(\text{Straight flush}) = \frac{10}{2,598,960} \times 4$.
	High partial credit: (8 marks)	_	Fails to list ways to achieve straight flush, but finds $P(\text{Straight flush}) = \frac{9}{2,598,960} \times 4.$
		-	Lists all ways to achieve straight flush and finds $\frac{9}{2,598,960}$, but fails to multiply
		_	by 4 (different possible suits). Lists 10 ways (including 'royal flush') in which a straight flush can be achieved and evaluates probability correctly, i.e. $P(\text{Straight flush}) = \frac{10}{2,598,960} \times 4.$

(5D)

5(c) Another valuable hand is a 'full house', which is three cards of one denomination and two cards of another denomination (e.g. three Jacks and two 5s is a full house).

Find the probability of a full house, as a fraction.

1 5	,		
0	P(Full house)	=	$\frac{\left[\binom{4}{3} \times 13\right] \times \left[\binom{4}{2} \times 12\right]}{\binom{52}{5}}$
		=	$\frac{[4 \times 13] \times [6 \times 12]}{2,598,960}$
		=	$\frac{52 \times 72}{2,598,960}$
		=	<u>3,744</u> 2,598,960
		=	<u>6</u> <u>4,165</u>
Scale 5D (0, 2, 3, 4, 5)	Low partial crea	dit: (2 ma	rks) – Any relevant first step, <i>e.g.</i> write $\binom{4}{2} \times 13 \ {}^{4}C_{2} \times 13 \ \binom{4}{2} \times 12 \text{ or}$

3, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\binom{4}{3} \times 13$, ${}^{4}C_{3} \times 13$, $\binom{4}{2} \times 12 \text{ or } {}^{4}C_{2} \times 12$
		_	(evaluated <u>or</u> not). Writes down $\frac{1}{52} \times \frac{1}{51} \times \frac{1}{50} \times \frac{1}{49} \times \frac{1}{48} \times 4$
			<u>or</u> evaluates correctly [ans. $\frac{4}{311,875,200}$ <u>or</u> $\frac{1}{77,968,800}$].
		_	Writes down $\frac{1}{2,598,960}$ and stops.
	Mid partial credit: (3 marks)	_	Finds $\begin{bmatrix} 4 \\ 3 \end{bmatrix} \times 13 \end{bmatrix} \times \begin{bmatrix} 4 \\ 2 \end{bmatrix} \times 12 \end{bmatrix}$, buts fails
			to divide by $\binom{52}{5}$.
	High partial credit: (4 marks)	_	Finds $\begin{bmatrix} 4\\3 \end{bmatrix} \times 13 \end{bmatrix} \times \begin{bmatrix} 4\\2 \end{bmatrix} \times 12 \end{bmatrix} / \begin{bmatrix} 52\\5 \end{bmatrix}$
			or equivalent, but fails to express in its singlest form.

6(a) Two circles, each of radius 4 units, intersect at the points *C* and *D*, as shown. The distance between the centres of the circles, *A* and *B*, is 6 units.

(i) Find $|\angle CAD|$, correct to two decimal places.

0		Trigonometry using	$g \Delta CAN$	<u>1</u>	
		$\cos \angle CAM $	=	$\frac{ AM }{ AC }$	4 C
			=	$\frac{3}{4}$	
	\Rightarrow	$ \angle CAM $	= =	$\cos^{-1} 0.75$ 41.409622	
	\Rightarrow	$ \angle CAD $ $ \angle CAD $	= = = ~	2 ∠ <i>CAM</i> 2(41·409622. 82·819244 82·82°)
<u>or</u>					
0		Cosine rule using A	CAB		
		$\frac{1}{a^2}$	=	$b^2 + c^2 - 2bc$	$\cos A$
	\Rightarrow	$ CB ^2$	=	$ AC ^{2} + AB ^{2}$	$^{2}-2 AC . AB \cos \angle CAB $
	$ \begin{array}{c} \uparrow \\ \uparrow $	$(4)^2$	=		$\mathcal{L}(4)(6)\cos \angle CAB $
	\Rightarrow	16	=	16 + 36 - 48	$\cos \angle CAB $
	\Rightarrow	$48\cos \angle CAB $	=	32	
	\Rightarrow	$\cos \angle CAB $	=	$\frac{36}{48}$	
			=	$\frac{3}{4}$	
	⇒	$ \angle CAB $	=	$cos^{-1} 0.75$	
	\rightarrow		=	41.409622	
		$ \angle CAD $	=	$2 \angle CAB $	
	\Rightarrow	$ \angle CAD $	=	2(41.409622.)
	,		=	82·819244)
			≅	82·82°	
* (0, 2, 3, 4	4, 5)	Low partial credit	t: (2 mai	rks) –	Any relevant first step, <i>e.g.</i> draws <u>or</u> indicates on diagram ΔCAM <u>or</u> ΔCAB with correct lengths of sides shown [<i>i.e.</i> hypotenuse, adjacent and relevant
					angle in method 0 ; sides <i>a</i> , <i>b</i> , <i>c</i> and
					relevant angle in method 2].
				_	Some correct substitution into
					trigonometric ratio <u>or</u> cosine rule, but
					fails to finish <u>or</u> finishes incorrectly.
				_	Finds $ CM $ [ans. $\sqrt{7}$].
		Mid partial credit	: (3 mar	ks) _	Finds $ \angle CAM = \cos^{-1} \frac{3}{4} \text{ or } \cos^{-1} 0.75,$
				_	but fails to finish <u>or</u> finishes incorrectly. Fully correct substitution into formula

Scale 5D*

for cosine rule [method **2**], but fails to

finish or finishes incorrectly.

6(a) (i) (cont'd.)

High partial credit: (4 marks)	_	Finds $ \angle CAM = 41.409622\circ \underline{\text{or}} 41.41^\circ$ [method 0 <u>or</u> @], but fails to find <u>or</u> finds incorrect $ \angle CAD $
		incorrect $ \angle CAD $.

* Deduct 1 mark off correct answer only if ● not rounded or incorrectly rounded or or of for the omission of or incorrect use of units ('°') - apply only once in each section (a), (b), (c), etc. of question.

(ii) Hence, find the area of the shaded region, correct to one decimal place.

(10D*)

	Area of the shaded region	=	$2 \times [Area of sector ADC - area of \Delta ADC]$
	area of sector	=	$\frac{\theta}{360}\pi r^2$
	area of triangle	=	$\frac{1}{2}ab\sin C$
\Rightarrow	Area of the shaded region	=	$2 \times [\frac{82 \cdot 82}{360} \pi(4)^2 - \frac{1}{2}(4)(4) \sin 82 \cdot 82]$
		=	2 × [11·563853 – 7·937267]
		=	2 × [3·626585]
		=	7.253171
		=	7.3 units^2

** Accept students' answers from part (a)(i) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down '2 × [Area of sector <i>ADC</i> – area of ΔADC]', '4 × [Area of sector <i>CAM</i> ' – area of ΔCAM]' or similar <u>and stops</u> . Some correct substitution into formula
			for area of a sector <u>or</u> area of triangle (formula stated <u>or</u> not).
	Mid partial credit: (6 marks)	_	Finds correct area of sector $CAD \text{ or } \Delta CAD$ [or sector $CAM \text{ or } \Delta CAM$] and stops or continues incorrectly.
	High partial credit: (8 marks)	-	Finds correct areas of sector <i>CAD</i> and ΔCAD [or sector <i>CAM</i> and ΔCAM], but fails to finish (multiply by 2 or 4) or finishes incorrectly.

* Deduct 1 mark off correct answer only if ● not rounded <u>or</u> incorrectly rounded <u>or</u> ② for the omission of <u>or</u> incorrect use of units ('units²') - apply only once in each section (a), (b), (c), *etc.* of question.

- **6(b)** In the diagram, [CD] is a median of triangle *ABC*, [DE] is a median of triangle *ADC* and *DE* is perpendicular to *AC*.
 - (i) Show that *DBC* is an isosceles triangle.

0 0	\Rightarrow	Consider $\triangle AED$ and [DE] is a median of AE Also $DE \perp AC$ $ \angle AED $				
6	\Rightarrow	Also $ ED = ED $ ΔAED	≡	ΔCED		common side of both triangles SAS
	\Rightarrow	AD	=	DC	1	other corresponding sides of Δs
0	\Rightarrow	[CD] is a median of $ AD $	$f \Delta ABC =$	C $ DB $	0	
	$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	Equating \bigcirc and \oslash : <i>DC</i> $\triangle DBC$ is isosceles	=	<i>DB</i>		
Scale 5C (0, 2, 4, 5)		Low partial credit:	(2 mai	rks) –	one c	relevant first step, <i>e.g.</i> writes down orrect step such as '[<i>DE</i>] is a median $(DC], \Rightarrow AE = EC $ ' and stops.
		High partial credit	: (4 ma	rks) –	three sides therel congr	The state $\Delta AED \equiv \Delta CED$, <i>i.e.</i> identifies pairs of corresponding angles <u>or</u> correctly (with brief explanations), by showing ΔAED and ΔCED are ruent (must be stated), but fails to a [step 4] <u>or</u> finishes incorrectly.

(ii) Given that the area of triangle *EDC* is 5 square units, find the area of triangle *ABC*. Explain the reasoning for your answer.

	Area of $\triangle ADE$	=	5 units ²
	Area of ΔADE	=	Area of $\triangle EDC$ as [<i>DE</i>] is a median of $\triangle ADC$ 5 units ²
\Rightarrow	Area of ΔADC	= = =	Area of $\triangle ADE$ + Area of $\triangle ADE$ 5 + 5 10 units ²
	Area of ΔDBC	=	Area of $\triangle ADC$ as [<i>CD</i>] is a median of $\triangle ABC$ 10 units ²
\Rightarrow	Area of $\triangle ABC$	= =	Area of $\triangle ADC$ + Area of $\triangle DBC$ 10 + 10 20 units ²
Scale 5C (0, 2, 4, 5)	Low partial credit:	: (2 mai	 Any relevant first step, <i>e.g.</i> writes down 'Area of Δ<i>ADE</i> = Area of Δ<i>EDC</i>' or 'Area of Δ<i>EDC</i> = 5' and stops. Finds correct answer [ans. 20 units²], but no justifications given.
	High partial credit	: (4 ma	rks) – Finds correct answer [ans. 20 units ²], but incomplete justifications given.

(5C)

Contexts and Applications

Answer all three questions from this section.

Question 7

7(a)

The diagram below shows two semi-circles of different radii that intersect at the point P. The larger semi-circle has centre O and radius 4 cm. The smaller semi-circle has centre C and radius 3 cm. The line through the centres, OC, intersects the smaller semi-circle at the point S and the larger semi-circle at the points Q and T.

(ii) Using the cosine rule, or otherwise, show that $\cos |\angle OCP| = \frac{1}{9}$.

=

 a^2 $|OP|^2$

 $(4)^2$

16

 $\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$

\Rightarrow	$18\cos \angle OCP $ $\cos \angle OCP $	= = =	$18 - 16$ 2 $\frac{2}{18}$ $\frac{1}{9}$	
\Rightarrow	$ \angle OCP $	=	$\cos^{-1}\frac{1}{9}$	O $\frac{1}{3}$ C Q S
Scale 10C (0, 4, 7, 10)	Low partial credit:	(4 ma	rks) –	Any relevant first step, <i>e.g.</i> writes down correct formula for cosine rule with some correct substitution, but fails to finish <u>or</u> finishes incorrectly.
	High partial credit:	(7 ma	arks) –	Fully correct substitution into formula for cosine rule, <i>i.e.</i> $(4)^2 = (3)^2 + (3)^2$ $-2(3)(3) \cos \angle OCP $, but fails to finish <u>or</u> finishes incorrectly.

= $b^2 + c^2 - 2bc \cos A$ = $|OC|^2 + |CP|^2 - 2|OC|.|CP| \cos |\angle OCP|$ = $(3)^2 + (3)^2 - 2(3)(3) \cos |\angle OCP|$

 $9+9-18\cos|\angle OCP|$

(10C)

Section B

(50 marks)

150 marks

Question 7 (cont'd.)

7(a)	(cont'd.)						
	(iii) Hence, show	that si	$\mathbf{n} \mid \angle OCP \mid = \frac{4\sqrt{5}}{9}.$				(5C)
			$\cos \angle OCP $	=	$\frac{1}{9}$		
		$\stackrel{\uparrow}{\uparrow} \stackrel{\uparrow}{\uparrow}$	Using Pythagoras' $ Hyp ^2$ $(9)^2$ $ Opp ^2$ Opp $\sin \angle OCP $	theorer = = = = = = =	n: $ Opp ^{2}$ $81 - 1$ 80 $\sqrt{80}$ $4\sqrt{5}$ $ Opp $ $ Hyp $ $\frac{4\sqrt{5}}{9}$	$x^{2} + Aa^{2} + (1)^{2}$	$ \mathbf{d}_{2} ^{2}$
	Scale 5C (0, 2, 4, 5)		Low partial credi	t: (2 ma	urks)	_	Any relevant first step, <i>e.g.</i> draws right- angle triangle with lengths of hypotenuse and adjacent marked. Some correct use of Pythagoras' theorem, but fails to find Opp .
			High partial cred	it: (4 ma	arks)	_	Finds correct Opp , [ans. $\sqrt{80} \text{ or } 4\sqrt{5}$], but fails to show that $\sin \angle OCP = \frac{4\sqrt{5}}{9}$.

 $= \frac{1}{2}ab\sin C$ Area of triangle ∠*OCP* 0 S 0 $= \frac{1}{2}|OC|.|CP|ab\sin|\angle OCP|$ $= \frac{1}{2}(3)(3)\frac{4\sqrt{5}}{9}$ Area of $\triangle OCP$ \Rightarrow ... given in part (a)(iii) $2\sqrt{5}$ units² Scale 5C (0, 2, 4, 10) Low partial credit: (2 marks) Any relevant first step, e.g. writes down correct formula for the area of a triangle with some correct substitution, but fails to finish or finishes incorrectly. Fully correct substitution into formula, High partial credit: (4 marks) *i.e.* area of $\triangle OCP = \frac{1}{2}(3)(3) \frac{4\sqrt{5}}{9}$, but fails to give final answer in surd form.

Find the area of triangle OCP, giving your answer in surd form.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('units²') - apply only once in each section (a), (b), (c), *etc.* of question.

7(b)

(i)

(5C)

(10D*)

7(b) (cont'd.)

(ii) Calculate the areas of the two sectors *OCP* and *POQ*. Give your answers correct to two decimal places.

J			r ····		(-)
		Area of sector	=	$\frac{\theta}{360}\pi r^2$	
0		Sector OCP			
		$\cos \angle OCP $	=	$\frac{1}{9}$	given in part (a)(ii)
	\Rightarrow	$ \angle OCP $	=	$\cos^{-1}\frac{1}{9}$	P
			=	$\cos^{-1} 0.111111$	
			=	83·620629°	3
	\Rightarrow	Area of sector OCP	=	$\frac{83.620629}{360}\pi(3)^2$	2OCP S
			=	6.567548	0 3 C Q S
			≅	6.57 units^2	
0		Sector POQ			
		Consider $\triangle POC$			
		OC	=	CP	
	\Rightarrow	ΔPOC is isosceles	_		
	\Rightarrow	$ \angle POC $	=	$ \angle COP $	
		$ \angle OCP $	=	$180^{\circ} - \angle POC - \angle CO$	P
			=	$180^\circ - 2 \angle POC $	P
	$ {\Rightarrow} $	$2 \angle POC \\ \angle POC $	=	$180^{\circ} - \angle OCP $ $180^{\circ} - \angle OCP $	
	\rightarrow			$\frac{180^\circ - \angle OCP }{180^\circ - \angle OCP }$	4
			=	2	ZPOC
		$ \angle POC $	=	$\frac{180^{\circ} - 83.620629}{2}$ —	$\begin{array}{c c} 2POC \\ \hline \\ 0 \\ \hline \\ 4 \\ C \\ Q \\ S \\ \end{array}$
			=	48·189685°	
	_	Area of anoton DOO	_	$\frac{48 \cdot 189685}{260} \pi (4)^2$	
	\Rightarrow	Area of sector POQ	=		
			=	6.728549	
			≅	6.73 units^2	

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for the area of a sector with some correct substitution, but fails to finish <u>or</u> finishes incorrectly. Finds correct value for $ \angle OCP $ and stops <u>or</u> continues incorrectly.
	Mid partial credit: (6 marks)	_	Fully correct substitution into area formula for sector <i>OCP</i> (evaluated <u>or</u> not) <i>i.e.</i> area of <i>OCP</i> = $\frac{83 \cdot 620629}{360} \pi (3)^2$.
	High partial credit: (8 marks)	_	Finds correct area of sector <i>OCP</i> and finds correct $ \angle POC $, but fails to find area of sector <i>POQ</i> or finds incorrect area. Finds correct area of sector <i>OCP</i> and some correct substitution into formula for area of sector <i>OCP</i> (no value or incorrect value for $ \angle POC $ found).

* Deduct 1 mark off correct answer only if **①** not rounded <u>or</u> incorrectly rounded <u>or</u> **②** for the omission of <u>or</u> incorrect use of units ('units²') - apply only once in each section (a), (b), (c), *etc.* of question.

7(b)

(cont	'd.)					
(iii)	Hence, find	the area	of the shaded region	, correc	et to one decimal place.	(5C*)
	0	\Rightarrow	Area of PCQ	= =	Area of sector POQ – Area of ΔOQ 6.73 – $2\sqrt{5}$	CP answers from parts (b)(i) and (b)(ii)
				= = =	6·73 – 2(2·236067) 6·73 – 4·472135 2·257864	
		\Rightarrow	Area of shaded area	=	Area of semi-circle – (Area of secto	or OCP + Area of PCQ)
				=	$\frac{1}{2}\pi(3)^2 - (6.57 - 2.257864)$	answer from part (b)(ii)
				=	14·137166 – 8·827864	
				= ≅	5·309302 5·3 units ²	Р
	or					
	0		$ \angle PCS $	=	$180^{\circ} - \angle OCP $	
			$ \angle OCP $	=	$\cos^{-1}\frac{1}{9}$	C Q S
				=	83·620629°	given in part (a)(ii)
		\Rightarrow	$ \angle PCS $	=	180 – 83·620629 96·379370°	
		\Rightarrow	area of sector PCS	=	$\frac{96\cdot379370}{360}\pi(3)^2$	
				=	7.569618	
			Area of PCQ	=	Area of sector POQ – Area of ΔOQ 6.73 – $2\sqrt{5}$	<i>CP</i> answers from parts
				=		(b)(i) and (b)(ii)
				_	6·73 – 2(2·236067) 6·73 – 4·472135	
				=	2·257864	
		\Rightarrow	Area of shaded area	=	Area of sector <i>PCS</i> – Area of <i>PCQ</i> 7.569618 – 2.257864	
				=	5·311754	
				≅	$5 \cdot 3 \text{ units}^2$	
			** A coant stude	nto' on	gwarg from parts (h)(i) and (h)(ii) if	not oversimplified

** Accept students' answers from parts (b)(i) and (b)(ii) if not oversimplified.

Low partial credit: (2 marks)		Any relevant first step, <i>e.g.</i> finds correct area of semi-circle <u>or</u> circle with correct radius (3 units). Finds correct area of <i>PCQ</i> and stops. Finds correct area of sector <i>PCS</i> and stops.
High partial credit: (4 marks)	_	Fully correct substitution into correct area of shaded region (evaluated <u>or</u> not), <i>i.e.</i> $\frac{1}{2}\pi(3)^2 - (6.57 - 2.257864),$ $\frac{96.379370}{360}\pi(3)^2 - (6.73 - 2\sqrt{5})$ or equivalents, but fails to finish of finishes incorrectly.

Deduct 1 mark off correct answer only if $\mathbf{0}$ not rounded <u>or</u> incorrectly rounded <u>or</u> $\mathbf{0}$ for the omission of <u>or</u> incorrect use of units ('units²') - apply only once * in each section (a), (b), (c), etc. of question.

Scale 5C* (0, 2, 4, 5)

(10D*)

7(c) Find the perimeter of the shaded region, correct to one decimal place.

	Perimeter of shaded	region		
		=	$ \operatorname{arc} PQ + \operatorname{arc} PS + QS $	
	arc PQ	=	$\frac{48.189685}{360}(2\pi)(4)$	answer from part (b)(ii)
		=	3.364274	
	arc PS	=	$\frac{96.379370}{360}(2\pi)(3)$	answer from part (b)(iii)
		=	5.047162	P
	QS	=	OS - OQ	r
		=	2 OC - OQ	
		=	2(3) - 4	
		=	2	
\Rightarrow	Perimeter of shaded	region		0 C Q S
		=	3.364274 + 5.047162	+ 2
		=	10.411436	
		≅	10.4 units	

** Accept students' answers from parts (b)(ii) and (b)(iii) if not oversimplified.

	1	-	
Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for the length of arc with some correct substitution to find one arc, but fails to finish <u>or</u> finishes incorrectly. Finds correct value for $ QS $ and stops.
	Mid partial credit: (6 marks)	_	Finds correct value for either $ \operatorname{arc} PQ $ or $ \operatorname{arc} PS $, and stops or continues incorrectly.
	High partial credit: (8 marks)	-	Finds correct value for $ \operatorname{arc} PQ $ and $ \operatorname{arc} PS $, but fails to finish <u>or</u> finishes incorrectly. Finds correct value for either $ \operatorname{arc} PQ $ <u>or</u> $ \operatorname{arc} PS $ and $ QS $, but fails to finish <u>or</u> finishes incorrectly.
	* Deduct 1 mark off correct	answer o	only if 0 not rounded or incorrectly rounded

Deduct 1 mark off correct answer only if **0** not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('units²') - apply only once in each section (a), (b), (c), *etc.* of question.

- **8(a)** Figures on the numbers of people passing their driving test are published annually. On analysis of the data, a researcher found that the probability of a person passing his/her test in a particular test centre on the first attempt $\frac{2}{2}$.
 - was $\frac{2}{3}$. Six individuals take their driving test for the first time.
 - (i) Find the probability that at least one of the individuals passes the test.

\Rightarrow	Bernoulli trial p (probability of success) q (probability of failure) n (number of individuals) P(k)	=	$1 - \frac{2}{3}$
	P(at least one passes)	=	$ \begin{pmatrix} k \end{pmatrix} $ 1 - P(no individual passes) $ 1 - \binom{6}{0} \left(\frac{2}{3}\right)^{0} \left(\frac{1}{3}\right)^{6} $ $ 1 - (1)(1) \left(\frac{1}{3}\right)^{6} $ $ 1 - \frac{1}{729} $ $ \frac{728}{729} \text{or} 0.998628 $
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 mar	rks)	- Any relevant first step, <i>e.g.</i> writes down explanation, <i>i.e.</i> $P(\text{at least one passes}) = 1 - P(\text{no individual passes}) \frac{\text{and stops}}{\text{and stops}}$. - Finds $p(\text{success}) = \frac{2}{3} \frac{\text{and } q}{\text{and } q}$ (failure) $= \frac{1}{3}$.
	High partial credit: (4 ma	rks)	- Finds correct <i>P</i> (no individual passes) = $\left(\frac{1}{3}\right)^6 \underline{\text{or}} \frac{1}{729}$, but fails to finish correctly. - Finds <i>P</i> (at least one passes) = $1 - \left(\frac{1}{3}\right)^6$, but fails to finish <u>or</u> finishes incorrectly.

(10C)

8(a) (cont'd.)

(ii) Find the probability that at most four individuals pass the test.

P(at most four pass)

_	1 $\left[D(\text{five page}) + D(\text{give page}) \right]$
_	1 - [P(five pass) + P(six pass)]
=	$1 - \left[\binom{6}{5} \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^1 + \binom{6}{6} \left(\frac{2}{3}\right)^6 \left(\frac{1}{3}\right)^0\right]$
=	$1 - \left[6\left(\frac{32}{243}\right)\left(\frac{1}{3}\right) + 1\left(\frac{64}{729}\right)(1)\right]$
=	$1 - [\frac{192}{729} + \frac{64}{729}]$
=	$1 - \frac{256}{729}$
=	$\frac{473}{729} \frac{\text{or}}{\text{or}} 0.648834$
(4 marks)	 Any relevant first step, <i>e.g.</i> writes correct explanation, <i>i.e.</i> P(at most for

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> $P(\text{at most four pass}) = 1 - [P(\text{five pass}) + P(\text{six pass})] \text{ and stops}.$ Some correct substitution into binomial formula, and stops or continues incorrectly, $e.g. \binom{6}{5} (\frac{2}{3})^5 (\frac{1}{3})^1 \text{ or } \binom{6}{6} (\frac{2}{3})^6 (\frac{1}{3})^0.$
High partial credit: (7 marks)	_	Fully correct substitution into binomial formula, but fails to evaluate correctly, <i>i.e.</i> $1 - [6\left(\frac{32}{243}\right)\left(\frac{1}{3}\right) + 1\left(\frac{64}{729}\right)(1)].$

(15D)

- **8(b)** A reputable driving school claims on its website that 80% of its students pass their driving test on their first attempt. In order to test this claim, a sample of 900 people who used the school and who had taken their test for the first time are chosen at random. The number of people who passed the driving test on their first attempt was 675.
 - (i) Conduct a hypothesis test at the 5% level of significance to decide whether there is sufficient evidence to justify the driving school's claim. Write the null hypothesis and the alternative hypothesis and state your conclusion clearly.

 $H_0: p = 0.8$ - percentage of students who used the driving school passed their driving test on their first attempt is 80% $H_1: p \neq 0.8$ - percentage of students who used the driving school passed their driving test on their first attempt is not 80%

A confidence interval for a population proportion, p, is

$$= \left[\hat{p} - z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right]$$
$$= \frac{675}{900}$$
$$= 0.75$$

At 95% confidence interval z-value = 1.

 \hat{p}

-value =
$$1.96$$

 \Rightarrow The 95% confidence interval for this population proportion, *p*, is

$$= \begin{bmatrix} 0.75 - 1.96\sqrt{\frac{0.75(1 - 0.75)}{900}}, & 0.75 + 1.96\sqrt{\frac{0.75(1 - 0.75)}{900}} \end{bmatrix}$$

=
$$\begin{bmatrix} 0.75 - 0.028290, 0.75 - 0.028290 \end{bmatrix}$$

=
$$\begin{bmatrix} 0.72171, 0.77829 \end{bmatrix}$$

€

0

0

Conclusion

As p = 0.8 is outside this interval, the result is significant. There is evidence to reject the null hypothesis (H_0) and accept the alternative hypothesis (H_1), *i.e.* the percentage of students who took the driving test for the first time and who passed the test is <u>not 80%</u>

Scale 15D (0, 6, 10, 13, 15)	Low partial credit: (6 marks)	_	Any relevant first step, <i>e.g.</i> writes down null hypothesis <u>and/or</u> alternative hypothesis only. Finds correct value for observed population, \hat{p} <u>and stops</u> . Mention of 5% level of significance and therefore comparing to <i>z</i> -value of ±1.96.
	Mid partial credit: (10 marks)	_	Finds correct value for \hat{p} and some correct substitution into 95% confidence interval for population proportion.
	High partial credit: (13 marks)	_	 Finds correct confidence interval and compares to correctly calculated value for p̂ but: fails to state the null <u>and/or</u> alternative hypothesis correctly, fails to accept <u>or</u> rejecting hypothesis. fails to contextualise answer properly. <i>i.e.</i> stops at rejects null hypothesis.

Question 8 (cont'd.)

8(b) (cont'd.)

> Find, using a 5% level of significance, the least number of people in that sample (ii) required to have passed the driving test in order to accept the driving school's claim.

$$p$$
 = 0.8
95% confidence interval for the population proportion, p ,
to accept the driving school's claim, is

0.8

 $\left[0.80 - 1.96\sqrt{\frac{0.8(1 - 0.8)}{900}}, + 1.96\sqrt{\frac{0.8(1 - 0.8)}{900}}\right]$ =

[0.80 - 0.026133, 0.80 - 0.026133]

$$= [0.80 - 0.026133, 0.80]$$

= [0.773867, 0.826133]

Least number of people in sample \Rightarrow

ĥ

$$= 0.773867 \times 900$$

= 696.4803

$$\approx$$
 697 people

* Accept either 696 or 697 as correct final answer.

Scale 5C (0, 2, 4, 5)

0

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> formulates confidence interval with some correct substitution.
High partial credit: (4 marks)	_	Finds correct confidence interval, but fails to find <u>or</u> finds incorrect least number of people in sample.

- 8(c) In a random sample of 200 drivers from all parts of the country, the 95% confidence interval for the mean number of penalty points received was $4.1921 \le \mu \le 4.6079$.
 - (i) Assuming that the number of penalty points received follows a normal distribution, find the standard deviation of this sample. (10D)
 - 95% confidence interval for the population mean:

 $\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}}$ $\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}} =$ \Rightarrow 4.1921 $\frac{\overline{x} + 1.96\frac{\sigma}{\sqrt{n}}}{2\overline{x}} =$ $\overline{x} =$ 4.6079 and 8.8 \Rightarrow 4.4 \Rightarrow $\overline{x} + 1.96 \frac{\sigma}{\sqrt{n}} =$ 4.6079 $4 \cdot 4 + 1 \cdot 96 \frac{\sigma}{\sqrt{n}}$ = 4.6079 \Rightarrow $1.96\frac{\sigma}{\sqrt{n}}$ = \Rightarrow $4 \cdot 6079 - 4 \cdot 4$ 0.2079 = $\frac{\sigma}{\sqrt{200}}$ 0.2079= \Rightarrow 1.96 $\sqrt{200} (0.106071...)$ σ \Rightarrow = = 1.500076... ĩ 1.5

2017.1 L.17/20 MS 70/80

8(c) (i) (cont'd.)

Scale 10D	(0, 4, 6, 8, 10)	
Scale IOD		

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> formulates confidence interval for population mean, <i>i.e.</i> $\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}$. Formulates two simultaneous equations in terms of \bar{x} and $\frac{\sigma}{\sqrt{n}}$.
Mid partial credit: (6 marks)		$\frac{\sqrt{n}}{\sqrt{n}}$ Finds correct value for \overline{x} , but fails to find correct value for $\frac{\sigma}{\sqrt{n}}$.
High partial credit: (8 marks)	_	Finds correct value for \overline{x} and $\frac{\sigma}{\sqrt{n}}$, but fails to finish or finishes incorrectly.

How many drivers in this sample can be expected to have more than 7 penalty points? (ii)

$$z = \frac{x - \overline{x}}{\sigma}$$

$$x = 7$$

$$\overline{x} = 4 \cdot 4$$

$$\sigma = 1 \cdot 5$$

$$\Rightarrow P(x > 7) = P\left(z > \frac{7 - 4 \cdot 4}{1 \cdot 5}\right)$$

$$= P(z > 1 \cdot 7333)$$

$$\cong P(z > 1 \cdot 73)$$

$$= 1 - P(z < 1 \cdot 73)$$

$$= 1 - P(z < 1 \cdot 73)$$

$$= 1 - 0 \cdot 9582 \qquad \dots \text{ from } z\text{-tables}$$

drivers expected to have more than 7 penalty points \Rightarrow

- 200×0.0418 =
- = 8.36 ≅

9 drivers

Accept students' answers from part (c)(i) if not oversimplified. **

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for <i>z</i> with some correct substitution into formula. Finds correct value for <i>z</i> , but fails to find \underline{z} -value from tables.
Mid partial credit: (3 marks)	_	Finds correct $P(z < 1.73)$ [ans. 0.9582], but fails to finish <u>or</u> finishes incorrectly.
High partial credit: (4 marks)	_	Finds correct probability, <i>i.e.</i> $P(x > 7)$ [ans. 0.0418], but fails to find <u>or</u> finds incorrect expected # driver.

Scale 5D (0, 2, 3, 4, 5)

(5D)

9(a) (i) Construct the incircle of the triangle ABC below using only a compass and a straight edge. Show all construction lines clearly.

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> construct one bisector correctly. Draws circle by trial and error, but within tolerance of 2 mm.
High partial credit: (7 marks)	_	Finds incentre correctly, but fails to draw incircle. Draws incircle correctly using method shown, but outside tolerance of 2 mm.

(ii) On the diagram above, mark the point O, the centre of the incircle, and the perpendicular distance from O to [AB], r, the radius of the incircle.

see diagram above

_

Let |AB| = c, |BC| = a and |AC| = b. (iii) Find an expression for the area of triangle ABO, in terms of r and one of these constants.

Area of $\triangle ABO$	=	$\frac{1}{2}$ (base × \perp height)
	=	$\frac{1}{2}(c \times r)$
	=	$\frac{cr}{2}$

5C (0, 2, 4, 5)	Low partial credit: (2 marks)		Any relevant first step, <i>e.g.</i> writes down correct formula for area of a triangle. Shows centre <i>O</i> and radius <i>r</i> correctly on diagram. Some correct substitution into formula for area of a triangle (<u>not</u> stated), <i>e.g.</i> $\frac{1}{2} \times AB \times r \text{ or } \frac{1}{2} \times c \times h$.
	High partial credit: (4 marks)	-	Shows centre <i>O</i> and radius <i>r</i> correctly on diagram and finds area of triangle as $\frac{1}{2} \times AB \times r \text{ or } \frac{1}{2} \times c \times h$.

Scale 50

(5C)

(10C)

Question 9 (cont'd.)

9(a) (cont'd.)

(iv) Hence, or otherwise, show that, if p is the length of the perimeter of triangle ABC, the area of triangle ABC is equal to $\frac{1}{2}pr$.

Area of $\triangle ABO$ = <u>Similarly</u> Area of $\triangle BCO$ = Area of $\triangle ABO$ =

Area of $\triangle ABC$

Area of $\triangle ABC$

 \Rightarrow

Scale 10C (0, 4, 7, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down 'Area of $\triangle ABC =$ Area of $\triangle ABO +$ Area of $\triangle BCO +$ Area of $\triangle CAO$ ' <u>or equiavlent</u> . Writes down perimeter, $p = a + b + c$. Finds correct area of $\triangle BCO \text{ or } \triangle ABO$, <i>i.e.</i> Area $\triangle BCO = \frac{ar}{2} \text{ or } \text{Area } \triangle ABO = \frac{br}{2}$, <u>and stops or</u> continues incorrectly.
	High partial credit: (7 marks)	_	Adds areas of all three smaller triangles, <i>i.e.</i> Area of $\triangle ABC = \frac{cr}{2} + \frac{ar}{2} + \frac{br}{2}$, but fails to finish <u>or</u> finishes incorrectly.

No deduction applied for the omission of <u>or</u> incorrect use of units ('units').

but fails to finish or finishes incorrectly.

*

9(c) Another wheel rests on the ground, touching the board [MN]. A second straight thin board [MQ] leans against this wheel with one end touching the top of the wall, M, and the other end resting on the ground, Q, a distance of 12 units further away from the wall than N, as shown.

.

Find, by calculation, the radius of this wheel.

0	⇒	Using Pythagoras' $ MN ^2$ $ MN ^2$	= = =	$ NL ^{2} + LM ^{2}$ $8^{2} + 15^{2}$ 64 + 225
	\Rightarrow	MN	=	$\frac{289}{\sqrt{289}}$ 17 units
0	⇒	Using Pythagoras' $ QM ^2$ $ QM ^2$	= =	$(QN + NL)^2 + LM ^2$ $(12 + 8)^2 + 15^2$ 400 + 225
	\Rightarrow	<i>QM</i>	= = =	$625 \\ \sqrt{625} \\ 25 \text{ units}$
6		Perimeter of ΔQNM p		12 + 17 + 25 54 units
4		Using area formula		
		Area of ΔQNM		$\frac{1}{2}(12)(15)$ 90 units ²
6		Using result from p	ort (0)(i	
U		-	art (a)(1	2
		Area of Δ	=	$\frac{1}{2}pr$
	\Rightarrow	Area of ΔQNM	=	$\frac{1}{2}(54)r$
		1	=	90
	\Rightarrow	$\frac{1}{2}(54)r$	=	90
	\Rightarrow	r	=	$\frac{90}{27}$
			=	$\frac{10}{3}$ units

(10D)

9(c) (cont'd.)

Scale 10D	() /	6	Q	10)
Scale 10D	(0, 4,	υ,	σ,	10)

** Accept students' answers from part (b) if not oversimplified.

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> finds, using Pythagoras' theorem, value for $ MN $ and stops [allow use of students' answers from part (i)]. Finds correct Area of ΔQNM and stops <u>or</u> continues incorrectly.
High partial credit: (6 marks)	_	Finds correct values of $ MN $ and $ QM $ and stops or continues incorrectly. Finds correct value of $ MN $ and correct Area of ΔQNM and stops or continues incorrectly.
High partial credit: (8 marks)	_	Finds correct perimeter of ΔQNM [ans. 54] and Area of ΔQNM [ans. 90], but fails to finish <u>or</u> finishes incorrectly.

* No deduction applied for the omission of <u>or</u> incorrect use of units ('units').

