What is the Doppler effect? (apparent) change in frequency	3
due to (relative) motion between source and observer	3
Explain, with the aid of labelled diagrams, how this phenomenon occurs. Diagram:	
labelled moving source of waves (-1 if no label)	3
shorter wavelength approaching observer	3
longer wavelength receding	3
correct reference to frequency change	3
(-1 if waves not clearly indicated/implied)	18
Describe a laboratory experiment to demonstrate the Doppler effect. source of sound (e.g buzzer) swing source attached to string note frequency change instant source passes observer	3 3 3
(source may also be propelled longitudinally along a string, etc.)	9
What causes the red shift in the spectrum of a distant star?	
stars move relative to earth	3

The yellow line emitted by a helium discharge tube in the laboratory has a wavelength of 587 nm as shown in the diagram. The same yellow line in the helium spectrum of a star has a measured wavelength of 590 nm.

What can you deduce about the motion of the star?	
star is <u>receding/moving away</u> from earth	3

Calculate the speed of the moving star.

$$\lambda' = \lambda \left(\frac{c+u}{c}\right) \qquad // \qquad f' = f\left(\frac{c}{c+u}\right) \tag{6}$$

$$u = c \left(\frac{\lambda'}{\lambda} - 1\right) \qquad // \quad u = c \left(\frac{f}{f'} - 1\right)$$

substitution [$f = 5.11073 \times 10^{14}$ and $f' = 5.08475 \times 10^{14}$]

$$u = 1.5333 \times 10^{6} \text{ m s}^{-1}$$

(-1 for omission of or incorrect units)

Give another application of the Doppler effect.

radar, medical imaging, blood flow measurement (echocardiogram), temperature measurement, (underwater) acoustics, etc.

5

18

3 3

6

- (a) Give two properties of radio waves. travel at speed of light; electromagnetic radiation; travel through vacuum;
 (can be) reflected; refracted; polarized; etc.
 any two: 4+3
- (b) In a three-minute phone call, 10 g of head tissue absorbs 0.36 J of radio frequency energy. Calculate the SAR value.

$$(Power =) \frac{0.36}{3 \times 60} (J s^{-1}) / = 0.002 (W)$$

$$SAR\left(\Rightarrow\frac{W}{kg}\right) = \frac{0.36}{(3\times60)(10\times10^{-3})} / 0.20 (W kg^{-1})$$

(c)	What happens to the radio frequency energy absorbed by the body? converted into heat carried away by the body	4 3
(đ)	Why are radio frequency waves not very penetrating? low frequency / long wavelength / low energy	7
(e)	A mobile phone converts the received radio frequency waves to sound waves What are the audible frequency limits for sound waves? (lower value \approx) 20 Hz (upper value \approx) 20 000 Hz (–1 for omission of or incorrec	4
ഗ	Give two safety precautions you should take when using a mobile phone. keep phone at distance / use loudspeaker function / 'no hands etc.:	

- brief calls only: direct antenna away from your head: etc. any two: 4+3
- (g) A mobile phone transmits at 1200 MHz from its antenna. Calculate the length of its antenna, which is one quarter of the wavelength that it transmits.

$$\lambda = \frac{c}{f} / \frac{3 \times 10^8}{1.2 \times 10^9} / 0.25 \text{(m)}$$

length of antenna = $0.0625 \approx 0.06$ m (-1 for omission of or incorrect units) 3

(h) Name an electromagnetic wave which may induce cancer. Justify your answer.

γrays / X-rays / UV	any one: 4
ionization of (body) cells	3

- (b) The pitch of a musical note depends on its frequency. On what does (i) the quality, (ii) the loudness, of a musical note depend?
- (i) (number or relative strengths of) <u>overtones /harmonics</u> // wave form
 (ii) amplitude / frequency/ λ / intensity / rate at which (acoustic) energy enters ear
 What is the Doppler effect?

 (apparent) change in frequency
 due to relative motion (stated or implied) between source and observer
 3

A rally car travelling at 55 m s⁻¹ approaches a stationary observer. As the car passes, its engine is emitting a note with a pitch of 1520 Hz. What is the change in pitch observed as the car moves away?

$$f' = \frac{f v_a}{v_a \pm v}$$
 (accept + or - format) 3

$$f' = \frac{1520(340)}{340+55} \qquad \qquad f'_{in} = \frac{340 \times 1520}{340-55} = 1813.33 \text{ Hz}$$

$$f' = 1308.35$$

 $\Delta f = 211.65 \text{ Hz}$
 $f'_{out} = 1308.35 \text{ Hz}$
3

$$\Delta f = 504.98 \approx 505 \text{Hz}$$
 (-1 for omission of or incorrect units)

Give an application of the Doppler effect.

calculate speeds of stars or galaxies / reference to red (or blue) shift / radar / speed traps / etc. 4

Question 7	
What is the Doppler effect?	
apparent change in <u>frequency</u> / <u>wavelength</u>	3
due to relative motion between source and observer (state/imply: e.g. either S or O moving)	3
Explain, with the aid of labelled diagrams, how this phenomenon occurs.	
non-concentric circles (-1 if not labelled as waves)	3
source and direction of motion (stated/implied)	3
position of observer indicated	3
shorter wavelength / higher frequency on approaching observer (or vice versa)	3
The emission line spectrum of a star was analysed using the Doppler effect. Describe how an emission line spectrum is produced.	
(monatomic) gas (or atoms)	3
is heated / is excited /receives energy	3
electron(s) move/jump to higher level/state	3
electromagnetic radiation/energy/photon/quantum_emitted on return	3

appropriate diagram may merit full marks (4 x 3)

Alternatively:

(monatomic) gas discharge tube / example, e.g. Na lamp	(2 x 3)
spectrometer + prism/grating // a direct vision spectroscope // (diffraction) grating	(3)
observation (e.g. a number of bright lines are seen)	(3)

The red line emitted by a hydrogen discharge tube in the laboratory has a wavelength of 656 nm. The same red line in the hydrogen spectrum of a moving star has a wavelength of 720 nm. Is the star approaching the earth? Justify your answer.

110	3
wavelength has increased // frequency has decreased	5

Calculate:

(i) the frequency of the red line in the star's spectrum

$$f' = \frac{c}{\lambda'} \qquad \text{or} \quad c = f \lambda \qquad 3$$

$$f' = \frac{3 \times 10^8}{720 \times 10^{-9}} \qquad \text{or} \quad f' = 4.17 \times 10^{14} \text{ Hz} \quad (-1 \text{ for omission of or incorrect units}) \qquad 3$$

(no penalty here for use of 656 nm rather than 720 nm.

Accept answer: 4.57 x 1014 Hz)

(ii) the speed of the moving star.

(Similarly)
$$f = 4.57 \times 10^{14} \text{ Hz}$$

 $f' = \frac{fc}{c+u}$

 $4.17 \times 10^{-14} = \frac{(4.57 \times 10^{-14})(3.00 \times 10^{-8})}{3.00 \times 10^{-8} + u}$
(-3 for incorrect substitution) 2 × 3

formula: substitution:

> $u = 2.92 \times 10^7 \text{ m s}^{-1}$ (-1 for omission of or incorrect units)

(speed of light = $3.00 \times 10^8 \text{ m s}^{-1}$)

answer:

5

3

Question 7

A student used a laser, as shown, to demonstrate that light is a wave motion.

(i) Name the two phenomena that occur when light passes through the pair of narrow slits. (6)

(i) Name the two phenomena that occur when light passes through the pair of narrow slits. (6)	
diffraction interference	3 3
(ii) A pattern is formed on the screen. Explain how the pattern is formed. (12) slits act as coherent sources	3
waves <u>overlap</u> / <u>meet</u> / path difference between waves (or shown on diagram)	3
constructive interference gives brightness / bright lines / bright fringes	3
destructive interference gives <u>darkness</u> / <u>dark lines</u> / <u>dark fringes</u>	3
 (iii) What is the effect on the pattern when (a) the wavelength of the light is increased. (4) distance between <u>fringes</u> / <u>lines</u> / <u>spots</u> increases // pattern more spread out 	4
(b) the distance between the slits is increased. (4) distance between <u>fringes</u> / <u>lines</u> / <u>spots</u> decreases // pattern less spread out	4
Describe an experiment to demonstrate that sound is also a wave motion. (12) two loudspeakers connected to signal generator // rotate vibrating (tuning) fork walk in front of and parallel to speakers // near ear	3 3
observation: (e.g. sound <u>loud and low</u> / <u>waxes and wanes</u>)	3
conclusion: interference occurs showing that sound is a wave motion	3
Sound travels as longitudinal waves while light travels as transverse waves. Explain the difference between longitudinal and transverse waves. (9)	
longitudinal waves: the direction of the vibrations (of medium)	3
is parallel to the direction of (propagation) of the wave	3
transverse wave: the direction (of the vibrations) is perpendicular to the (direction of the) wave	3
Describe an experiment to demonstrate that light waves are transverse waves. (9) light source and two pieces of polaroid rotate one polaroid relative to the other and light (intensity)decreases (to zero)	3 3
<u>polarization</u> indicates transverse waves	3

Question 6

(d) A sound wave is diffracted as it passes through a doorway but a light wave is not. Explain why. (7) wavelength of light (much) less than wavelength of sound

7

(d) How is infra-red radiation detected? thermometer / temperature sensor(or probe) / photographic film(or plate) / (by its) heating effect, etc. (any one) 7