TrigPart1H

Question 1 (2017)

$$
\begin{gathered}
4(2)+4 \sqrt{2}+4+\cdots \cdots \cdots \\
a=8 \quad r=\frac{1}{\sqrt{2}} \\
S_{\infty}=\frac{a}{1-r} \\
S_{\infty}=\frac{8}{1-\frac{1}{\sqrt{2}}} \\
S_{\infty}=\frac{8}{1-\frac{1}{\sqrt{2}} \cdot \frac{1+\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}} \\
S_{\infty}=\frac{8\left(1+\frac{1}{\sqrt{2}}\right)}{\frac{1}{2}} \\
S_{\infty}=16+8 \sqrt{2}
\end{gathered}
$$

Scale $10 \mathrm{C}(0,5,8,10)$
Low Partial Credit:

- length of one side of new square

High Partial Credit:

- S_{∞} fully substituted
- Correct work with one side only

(a)	
(a)	Scale 20C (0, 10, 18, 20) Low Partial Credit: - Vertical axis drawn - Horizontal axis drawn. High Partial Credit: - Horizontal axis fully scaled and positioned OR - Vertical axis fully scaled Use relevant portions of axes Note: P can be on vertical axis

(b) (i)	$\begin{gathered} f(t)=a+b \cos c t \\ \text { Range: }[(a+b),(a-b)] \\ a+b=5.5 \quad a-b=1.7 \\ a=3.6 \quad b=1.9 \end{gathered}$	Scale $10 \mathrm{C}(0,5,8,10)$ Low Partial Credit: - one equation in a and b - Range in terms of a and b High Partial Credit: - a or b found Note: Accept correct answer without work
(b) (ii)	Time between two successive high tides is: $12 \frac{34}{60}$ hours $\begin{gathered} \text { period }=12 \frac{34}{60} \\ \text { period }=\frac{2 \pi}{c} \\ c=\frac{2 \pi}{12 \frac{34}{60}}=0.4999=0.5 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - Period identified or $\frac{2 \pi}{c}$ or $12 \cdot 34$ High Partial Credit: - equation in c with some substitution
(c)	$\begin{aligned} & 5 \cdot 2=a+b \cos c t \\ & 5 \cdot 2=3 \cdot 6+1 \cdot 9 \cos 0 \cdot 5 t \\ & 0 \cdot 5 t=\cos ^{-1} \frac{1 \cdot 6}{1 \cdot 9}=0 \cdot 569621319 \\ & 0 \cdot 5 t=0 \cdot 5696 \\ & t=1 \cdot 139 \text { hours } \end{aligned}$ (before and after high tide at 14:34) Time $=1$ hour 8 minutes Times: $\quad(14: 34) \pm 1$ hour 8 min $\Rightarrow 13: 26 \text { and } 15: 42$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - equation with some substitution High Partial Credit: - solution for t Note: Low partial at most if formula not used

(a)	$\begin{aligned} & A(0,6) \rightarrow G\left(\frac{2}{3}, \frac{4}{3}\right) \\ & \rightarrow P\left(\frac{2}{3}+\frac{1}{2}\left(\frac{2}{3}\right), \frac{4}{3}+\frac{1}{2}\left(\frac{-14}{3}\right)\right) \\ & =\left(\frac{3}{3},-\frac{3}{3}\right) \\ & P=(1,-1) \end{aligned}$ or $\begin{gathered} P=(x, y) \\ \left(\frac{2 x+1(0)}{3}, \frac{2 y+6}{3}\right)=\left(\frac{2}{3}, \frac{4}{3}\right) \\ x=1, \quad y=-1 \end{gathered}$ or $\begin{aligned} P & =(x, y) \\ \left(\frac{3\left(\frac{2}{3}\right)-1(0)}{3-1}\right. & \left., \frac{3\left(\frac{4}{3}\right)-1(6)}{3-1}\right) \\ & =\left(\frac{2}{2}, \frac{-2}{2}\right)=(1,-1) \end{aligned}$	Scale $10 \mathrm{C}(0,4,5,10)$ Low Partial Credit: - $P\left(\frac{4}{3},-\frac{10}{3}\right)$ or equivalent, i.e ratio 1:1 - $\frac{2}{3}$ or $\frac{1}{3}$ identified as part of change in x ordinate - $-\frac{14}{3}$ or $-\frac{7}{3}$ identified as part of change in y ordinate - Ratio formula with some substitution High Partial Credit: - one relevant co-ordinate of P found
(b)	$\begin{gathered} C(4,2) \rightarrow P(1,-1) \rightarrow B(1-3,-1-3) \\ =(-2,-4) \\ B(x, y) \rightarrow\left(\frac{4+x}{2}, \frac{2+y}{2}\right)=(1,-1) \\ x=-2, \quad y=-4 \\ B=(-2,-4) \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: - P as mid-point of $B C$ High Partial Credit: - one relevant co-ordinate of B found Note: Accept $(-2,-4)$ without work Accept correct graphical solution

(c)

$$
\begin{gathered}
A C \perp B C \\
A C=\frac{2-6}{4-0}=-1 \\
B C=\frac{2+4}{4+2}=1 \\
-1 \times 1=-1
\end{gathered}
$$

lines are perpendicular

or

Slope $A B=5$.
Altitude from C : $y-2=-\frac{1}{5}(x-4)$

$$
\rightarrow x+5 y=14 \ldots . \text { (i). }
$$

Slope $\mathrm{AC}=-1$.
Altitude from B :
$y+4=1(x+2)$
$\rightarrow x-y=2 \ldots \ldots$
\rightarrow Solving (i)and (ii)

$$
x=4
$$

Low Partial Credit:

- Identifies significance of right-angled triangle
- one equation of perpendicular from vertex to opposite side found

High Partial Credit:

- slope of $A C$ and slope of $B C$ found but no conclusion
- two equations of perpendiculars from vertex to opposite side found

$$
y=2
$$

(a)	$\begin{aligned} & \tan 60^{\circ}=\frac{\|T E\|}{\|C T\|} \\ & \sqrt{3}\|C T\|=\|T E\| \end{aligned}$	Scale 10B (0, 5, 10) Partial Credit: - $\tan 60^{\circ}$ - effort to express $\|T E\|$ in terms of another side of the triangle
(b)	$\begin{array}{r} \tan 30^{\circ}=\frac{\|T E\|}{\|D T\|} \\ \|T E\|=\|D T\| \frac{1}{\sqrt{3}} \\ \|T E\|=\frac{\sqrt{225+\left\|C T^{2}\right\|}}{\sqrt{3}} \\ \|T E\|=\sqrt{\frac{225+\|C T\|^{2}}{3}} \end{array}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: - $\tan 30^{\circ}$ - Use of Pythagoras for $\|D T\|$ - Effort at expressing $\|D T\|$ in terms of another side of $\triangle D E T$ High Partial Credit: - $\|T E\|=\|D T\| \frac{1}{\sqrt{3}}$
(c)	$\begin{aligned} & \sqrt{3}\|C T\|=\sqrt{\frac{225+\|C T\|^{2}}{3}} \\ &\|C T\|=\sqrt{\frac{225}{8}} \\ &=5.3033 \mathrm{~m} \\ &=5.3 \mathrm{~m} \end{aligned}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: - equates both expressions High Partial Credit: - Isolate $\|C T\|$ in equation

(d)	$\|T E\|=\sqrt{3}\|C T\|=9 \cdot 17986 \mathrm{~m}=9 \cdot 2 \mathrm{~m}$	Scale 10B (0, 5, 10) Low Partial Credit - Substitution into formula for $\|T E\|$	
(e)	$\begin{gathered} \cos \theta=\frac{\|C T\|}{\|F T\|}=\frac{\|C T\|}{\|T E\|}=\frac{\|C T\|}{\sqrt{3}\|C T\|}=\frac{1}{\sqrt{3}} \\ \theta=54.7 \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: - Some relevant substitution for $\cos \theta$ High Partial Credit: - Formula for $\cos \theta$ substituted in terms of \|CT	
(f)	$\begin{aligned} P= & \frac{(54 \cdot 7)(2)}{360} \\ = & 0.3038 \\ & =30 \cdot 4 \end{aligned}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: - (Answer to part (e)) $\times 2$ - 360° High Partial Credit: - P fully formulated	

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} \text { Slope } A C=-\frac{2}{3} \\ \text { perp. slope }=\frac{3}{2} \\ y-3=\frac{3}{2}(x-5) \\ 3 x-2 y=9 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - slope formula with some relevant substitution - $3=5 m+c$ - $y-y_{1}=m\left(x-x_{1}\right)$ with x_{1} or y_{1} or both substituted High Partial Credit - perpendicular slope - equation of line through B parallel to $A C$
(b)	Point of intersection of the altitudes $\begin{gathered} \text { Slope } A B=\frac{3+2}{5-6}=-\frac{5}{1} \\ \text { perp. slope }=\frac{1}{5} \\ y-4=\frac{1}{5}(x+3) \\ x-5 y+23=0 \end{gathered}$ Orthocentre: $\begin{aligned} & 3 x-2 y=9 \cap x-5 y=-23 \\ & \Rightarrow y=6 \quad \begin{array}{c} x=7 \\ (7,6) \end{array} \end{aligned}$ or If $B C$ chosen: $\begin{gathered} \text { Slope } B C=\frac{3-4}{5+3}=-\frac{1}{8} \\ \text { perp. slope }=8 \end{gathered}$ Equation of altitude: $y+2=8(x-6)$ Equation: $8 x-y=50$ Orthocentre: $\begin{aligned} & 3 x-2 y=9 \cap 8 x-y=50 \\ & \Rightarrow y=6 \quad \begin{array}{c} x=7 \\ (7,6) \end{array} \end{aligned}$	Scale 15D (0, 4, 7,11,15) Low Partial Credit - demonstration of understanding of orthocentre (e.g. mentions altitude) - slope formula with some relevant substitution - altitude from part (a) Mid Partial Credit - equation of an altitude other than (a) - some relevant substitution towards finding a second altitude and altitude from (a) - correct construction High Partial Credit - two correct altitudes - correct construction with orthocentre $(7,6)$

Q2	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} y-6=\frac{1}{7}(x+1) \\ x-7 y+43=0 \end{gathered}$	Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit: - equation of line formula with some relevant substitution High Partial Credit: - equation of line not in required form
(b)	$\begin{gather*} D=\frac{\left\|a x_{1}+b y_{1}+c\right\|}{\sqrt{a^{2}+b^{2}}} \\ D=\frac{\|3(-g)+4(-f)-21\|}{\sqrt{3^{2}+4^{2}}} \\ 25=\|-3 g-4 f-21\| \\ -3 g-4 f-21= \pm 25 \\ \Rightarrow 3 g+4 f=-46 \quad \ldots \text { (i) } \\ \text { and } 3 g+4 f=4 \ldots \text {... (ii) } \tag{ii} \end{gather*}$ But $(-g,-f) \in x-7 y+43=0$ $\begin{align*} & \Rightarrow-g+7 f+43=0 \ldots \tag{iii}\\ & \Rightarrow g=7 f+43 \end{align*}$ Solving : $g=7 f+43$ and $3 g+4 f=-46$ $f=-7 \text { and } g=-6$ Centre $(6,7)$ $(x-6)^{2}+(y-7)^{2}=25$ or Solving: $g=7 f+43$ and $3 g+4 f=4$ $f=-5 \text { and } g=8$ Centre (-8,5) $(x+8)^{2}+(y-5)^{2}=25$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit - some correct substitution into relevant formula (line, circle, perpendicular distance). Mid Partial Credit - one relevant equation in g and f - (either(i) or (ii) or (iii)) High Partial Credit - two relevant equations (either (i) and (iii) or (ii) and (iii))

Q4	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{align*} & \|\angle A B D\|=\|\angle C B D\|=90^{\circ} \ldots . . . \text { (i) } \\ & \|\angle B D C\|+\|\angle B C D\|=90^{\circ} \ldots \text {...angles in triangle } \\ & \text { sum to } 180^{\circ} \\ & \|\angle A D B\|+\|\angle B D C\|=90^{\circ} \ldots . \text { angle in } \\ & \text { semicircle } \\ & \|\angle A D B\|+\|\angle B D C\|=\|\angle B D C\|+\|\angle B C D\| \\ & \|\angle A D B\|=\|\angle B C D\| \ldots \ldots . . \text { (ii) } \tag{ii}\\ & \therefore \text { Triangles are equiangular (or similar) } \\ & \text { or } \\ & \|\angle A B D\|=\|\angle C B D\|=90^{\circ} \ldots . . . \text { (i) } \tag{i}\\ & \|\angle D A B\|=\|\angle D A C\| \text { same angle } \Rightarrow\|\angle A D B\| \\ & =\|\angle D C A\| \quad \text { (reasons as above) which is } \\ & \text { also } \angle D C B \ldots \text { (ii) } \tag{ii} \end{align*}$	Scale 15C (0, 5, 10, 15) Low Partial Credit - identifies one angle of same size in each triangle High Partial Credit - identifies second angle of same size in each triangle - implies triangles are similar without justifying (ii) in model solution or equivalent
(a) (ii)	$\begin{gathered} \frac{y}{1}=\frac{x}{y} \\ \Rightarrow y^{2}=x \\ y=\sqrt{x} \end{gathered}$ or $\begin{gathered} \|A D\|^{2}+\|D C\|^{2}=\|A C\|^{2} \\ \|A D\|=\sqrt{x^{2}+y^{2}} \\ \|D C\|=\sqrt{y^{2}+1} \\ x^{2}+y^{2}+y^{2}+1=(x+1)^{2} \\ 2 y^{2}=2 x \\ y=\sqrt{x} \end{gathered}$ Or $\begin{array}{r} \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{y^{2}+1}}=\frac{y}{1} \Rightarrow x^{2}+y^{2}=y^{2}\left(y^{2}+1\right) \\ y^{4}=x^{2} \Rightarrow y^{2}=x \Rightarrow y=\sqrt{x} \end{array}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - one set of corresponding sides identified - indicates relevant use of Pythagoras High Partial Credit - corresponding sides fully substituted - expression in y^{2} or y^{4}, i.e. fails to finish

(b)

Construction

Scale $5 \mathrm{C}(0,2,4,5)$
Low Partial Credit

- perpendicular line drawn at U or T
- relevant use of 1 cm length
- mid point of incorrect extended segment constructed

High Partial Credit

- correct mid-point constructed

Q7	Model Solution - 55 Marks	Marking Notes
(a) (i)	$\begin{gathered} \|E C\|^{2}=3^{2}+2.5^{2}=15.25 \\ \|E C\|=\sqrt{15.25} \\ \|E C\|=3.905 \\ \Rightarrow\|A C\|=1.9525 \\ =1.95 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - Pythagoras with relevant substitution High Partial Credit - $\|E C\|$ correct - $\|A C\|=\frac{1}{2} \sqrt{15 \cdot 25}$
(a) (ii)	$\begin{gathered} \tan 50^{\circ}=\frac{\|A B\|}{1 \cdot 95} \\ \|A B\|=1 \cdot 95(1 \cdot 19175)=2 \cdot 23239 \\ \|A B\|=2 \cdot 3 \end{gathered}$	Scale 10B ($0,5,10$) Partial Credit - tan formulated correctly
(a) (iii)	$\begin{gathered} \|B C\|^{2}=1 \cdot 95^{2}+2 \cdot 3^{2} \\ \|B C\|=3 \cdot 015377 \\ \|B C\|=3 \end{gathered}$ Also: $\sin 40^{\circ}=\frac{1 \cdot 95}{\|B C\|}$ or $\cos 40^{\circ}=\frac{2 \cdot 3}{\|B C\|}$ or $\cos 50^{\circ}=\frac{1.95}{\|B C\|} \text { or } \sin 50^{\circ}=\frac{2.3}{\|B C\|}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - Pythagoras with relevant substitution High Partial Credit - Pythagoras fully substituted - $\|B C\|=\frac{1.95}{\sin 40^{\circ}}$ (i.e. $\|B C\|$ isolated)
(a) (iv)	$\begin{gathered} 3^{2}=3^{2}+2 \cdot 5^{2}-2(3)(2 \cdot 5) \cos \propto \\ 15 \cos \propto=6 \cdot 25 \\ \propto=65^{\circ} \\ \text { or } \\ \cos \propto=\frac{1 \cdot 25}{3} \\ \propto=65^{\circ} \end{gathered}$	Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit - cosine rule with some relevant substitution - cosine ratio with some relevant substitutions - identifies three sides of triangle $B C D$ High Partial Credit - cosine rule with full relevant substitutions - cosine ratio with full relevant substitutions

(a) (v)	$\begin{gathered} A=2 \times \text { isosceles triangle }+2 \times \text { equilateral } \\ \text { triangle } \\ =2 \times\left[\frac{1}{2}(2.5)(3) \sin 65^{\circ}\right]+ \\ 2 \times\left[\frac{1}{2}(3)(3) \sin 60^{\circ}\right] \\ =14.59 \\ A=15 \end{gathered}$	Scale 10D (0,3,5,8,10) Low Partial Credit - recognises area of 4 triangles Mid Partial Credit - Area of 1 triangle correct High Partial Credit - area of isosceles triangle and equilateral triangle Note: Area $=4$ isosceles or 4 equilateral triangles merit HPC at most
(b)	$\begin{gathered} \tan 60^{\circ}=\frac{3}{\|C A\|} \\ \Rightarrow\|C A\|=\sqrt{3} \\ \|C E\|=2 \sqrt{3} \\ x^{2}+x^{2}=(2 \sqrt{3})^{2} \\ x=\sqrt{6} \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - effort at Pythagoras but without $\|C A\|$ (or $\|C E\|)$ - $\|C A\|$ found High Partial Credit - $\|C E\|=2 \sqrt{3}$

Question 9 (2016)

Q5	Model Solution - 25 Marks	Marking Notes
(a) (i)	$\begin{gathered} (5 x-9)^{2}=(x-1)^{2}+(4 x)^{2} \\ 8 x^{2}-88 x+80=0 \\ x^{2}-11 x+10=0 \\ (x-1)(x-10)=0 \\ x=1 \text { or } x=10 \\ x=10 \end{gathered}$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit - any use of Pythagoras Mid Partial Credit - fully correct substitution High Partial Credit - both roots correct
(a) (ii)	$\begin{aligned} & \text { Sides }=9,40,41 \\ & \begin{aligned} 9^{2}+40^{2} & =41^{2} \\ 81+1600 & =1681 \\ 1681= & 1681 \end{aligned} \end{aligned}$	Scale 5B (0, 2, 5) Partial Credit - 9 or 40 or 41 - using 1 or -10 from candidates work

(a) Prove that $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$.

$$
\begin{aligned}
& \begin{aligned}
\tan (A+B)= & \frac{\sin (A+B)}{\cos (A+B)} \\
= & \frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B} \\
= & \frac{\frac{\sin A \cos B}{\cos A \cos B}+\frac{\cos A \sin B}{\cos A \cos B}}{\cos A \cos B}-\frac{\sin A \sin B}{\cos A \cos B}
\end{aligned} \\
& = \\
& \quad \frac{\text { or }}{1-\tan A+\tan B}
\end{aligned} \quad \begin{aligned}
& \frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A \sin B}{\cos A \cos B}}= \\
& \frac{\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B-\sin A \sin B}{\cos A \cos B}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B}=} \\
& \frac{\sin (A+B)}{\cos (A+B)}=\tan (A+B)
\end{aligned}
$$

(b) Find all the values of x for which $\sin (3 x)=\frac{\sqrt{3}}{2}, 0 \leq x \leq 360, x$ in degrees.

$$
\begin{aligned}
& \sin 3 x=\frac{\sqrt{3}}{2} \\
& \Rightarrow 3 x=60^{\circ}, \quad 120^{\circ}, 420^{\circ}, 480^{\circ}, \quad 780^{\circ}, \quad 840^{\circ} \\
& \Rightarrow x=20^{\circ}, 40^{\circ}, 140^{\circ}, \quad 160^{\circ}, \quad 260^{\circ}, \quad 280^{\circ} \\
& \text { or } \\
& \begin{array}{l}
3 x=60^{\circ}+n\left(360^{\circ}\right), n \in \mathbb{Z} \text { or } 3 x=120^{\circ}+n\left(360^{\circ}\right), n \in \mathbb{Z} \\
x=20^{\circ}+n\left(120^{\circ}\right), n \in \mathbb{Z} \text { or } x=40^{\circ}+n\left(120^{\circ}\right), n \in \mathbb{Z}
\end{array}
\end{aligned}
$$

$n=0 \Rightarrow x=20^{\circ}$ or $x=40^{\circ}$
$n=1 \Rightarrow x=140^{\circ}$ or $x=160^{\circ}$
$n=2 \Rightarrow x=260^{\circ}$ or $x=280^{\circ}$
(a) Joan is playing golf. She is 150 m from the centre of a circular green of diameter 30 m . The diagram shows the range of directions in which Joan can hit the ball so that it could land on the green. Find α, the measure of the angle of this range of directions. Give your answer, in degrees, correct to one decimal place.

$$
\begin{gathered}
\sin \frac{1}{2} \alpha=\frac{15}{150}=0.1 \\
\Rightarrow \frac{1}{2} \alpha=5.739^{\circ} \\
\Rightarrow \alpha=11.478^{\circ} \\
\alpha=11.5^{\circ}
\end{gathered}
$$

(b) At the next hole, Joan, at T, attempts to hit the ball in the direction of the hole H. Her shot is off target and the ball lands at A, a distance of 190 metres from T, where $|\angle A T H|=18^{\circ} .|T H|$ is 385 metres. Find $|A H|$, the distance from the ball to the hole, correct to the nearest metre.

$$
\begin{aligned}
|A H|^{2} & =190^{2}+385^{2}-2(190)(385) \cos 18^{\circ} \\
& =36100+148225-139139 \cdot 5683 \\
& =45185 \cdot 4317 \\
|A H| & =212 \cdot 57=213
\end{aligned}
$$

Draw $A X$ perpendicular to $T H$
triangle $A T X: \quad \sin 18^{\circ}=\frac{|A X|}{190} \Rightarrow|A X|=58.71$
$\cos 18^{\circ}=\frac{|T X|}{190} \Rightarrow|T X|=180 \cdot 7$
$\Rightarrow|X H|=204 \cdot 3$
$\Rightarrow|A H|^{2}=(58 \cdot 71)^{2}+(204 \cdot 3)^{2}$
$\Rightarrow|A H|=212 \cdot 566=213$
(c) At another hole, where the ground is not level, Joan hits the ball from K, as shown. The ball lands at B. The height of the ball, in metres, above the horizontal line $O B$ is given by

$$
h=-6 t^{2}+22 t+8
$$

where t is the time in seconds after the ball is struck and h is the height of the ball.

(i) Find the height of K above $O B$.

$$
\begin{aligned}
& h=-6 t^{2}+22 t+8 \\
& t=0 \Rightarrow h=8 \mathrm{~m}
\end{aligned}
$$

(ii) The horizontal speed of the ball over the straight distance $[O B]$ is a constant $38 \mathrm{~m} \mathrm{~s}^{-1}$. Find the angle of elevation of K from B, correct to the nearest degree.

$$
\begin{aligned}
h=0 & \Rightarrow-6 t^{2}+22 t+8=0 \\
& \Rightarrow(t-4)(-6 t-2)=0 \\
& \Rightarrow t=4, \quad t=-\frac{1}{3} \\
t=4 & \Rightarrow|O B|=38 \times 4=152 \mathrm{~m} \\
\tan \mid & \left.\angle O B K\left|=\frac{8}{152}=\frac{1}{19} \Rightarrow\right| \angle O B K \right\rvert\,=3 \cdot 01^{\circ}=3^{\circ}
\end{aligned}
$$

(d) At a later hole, Joan's first shot lands at the point G, on ground that is sloping downwards, as shown. A vertical tree, $[C E], 25$ metres high, stands between G and the hole. The distance, $|G C|$, from the ball to the bottom of the tree is also 25 metres.
The angle of elevation at G to the top of the tree, E, is θ, where $\theta=\tan ^{-1} \frac{1}{2}$.
The height of the top of the tree above the horizontal, $G D$, is h metres and $|G D|=d$ metres.
(i) Write d and $|C D|$ in terms of h.

$$
\begin{aligned}
& \tan \theta=\frac{h}{d}=\frac{1}{2} \\
& \Rightarrow d=2 h \\
& |C D|=25-h
\end{aligned}
$$

(ii) Hence, or otherwise, find h.

$$
\begin{aligned}
& d^{2}+|C D|^{2}=25^{2} \\
& (2 h)^{2}+(25-h)^{2}=25^{2} \\
& 4 h^{2}+625-50 h+h^{2}=625 \\
& 5 h^{2}-50 h=0 \\
& h=0, \quad h=10 \\
& h=10 \mathrm{~m}
\end{aligned}
$$

or
$\theta=\tan ^{-1} \frac{1}{2}=26.565^{\circ}$
$\Rightarrow|G E D|=63.435^{\circ}$
$\Rightarrow|C G E|=63.435^{\circ}$
$\Rightarrow|C G D|=63 \cdot 435^{\circ}-26 \cdot 565^{\circ}=36 \cdot 87^{\circ}$
$\sin 36 \cdot 87=\frac{25-h}{25}=0 \cdot 6$
$\Rightarrow 25-h=15$
$\Rightarrow h=10 \mathrm{~m}$
or
$\left|\angle G C E=53 \cdot 14^{\circ}\right| \Rightarrow \sin 53 \cdot 14^{\circ}=\frac{2 h}{25}$
$\Rightarrow 0 \cdot 8=\frac{2 h}{25} \Rightarrow h=10 \mathrm{~m}$

