studyclix

Quest	ion 1	
	p and V inversely proportional for a fixed mass of gas at constant temperature	(4) (3)
Quest	ion 2	
1.	The laws of equilibrium for a set of co-planar forces acting on a metre stick were investigated by a student. She first found the centre of gravity of the metre stick and then determined its weight as 1.3 N.	
	How did the student find the centre of gravity of the metre stick? balanced (horizontally) at a point (fulcrum) / suspended (horizontally) from a string	3
	The centre of gravity was at the 50.3 cm mark rather than the mid-point of the metre stick. Explain. metre stick not uniform / stick chipped / extra material on one end	3
	The metre stick was suspended from two spring balances graduated in newtons. The student made use of a se three weights, which she hung from the metre stick. She adjusted them until the metre stick was at equilibriu How did the student ensure that the system was at equilibrium? system not moving	
	Draw a diagram of the experimental arrangement that the student used. metre stick horizontal metre stick suspended from <i>two</i> spring balances with only <i>three</i> weights suspended from stick	3 3

The student recorded the positions of the forces acting on the metre stick and the direction in which each force was acting.

Position of force on metre stick/cm	11.4	21.8	30.3	65.4	80.0
Force/N	2.0	3.0	5.7	4.6	4.0
Direction	downwar d	downwar d	upward	upw ar d	downward

Taking the moments of the forces about the mid-point of the metre stick (50 cm mark), use the student's data to calculate

- (i) the total of the clockwise moments
- (ii) the total of the anti-clockwise moments.

 $\frac{\text{torque} / (\text{turning}) \text{ moment} / M / T}{\text{correct calculation of the moment of any force about any fulcrum}} 3$ correct calculation of the moment of any force about any fulcrum 3moment due to weight of metre stick (= 1.3 × 0.003 = 0.0039 N m) 3moments (i): (2.0 × 0.386) + (3.0 × 0.282) + (4.6 × 0.154)= 0.772 + 0.846 + 0.7084 = 2.3264 N m 3moments (ii): (5.7 × 0.197) + (1.3 × 0.003) + (4.0 × 0.3) = 1.1229 + 0.0039 + 1.2 = 2.3268 N m 3(-3 for moments taken about any point other than the 50 cm mark)(-1 for omission of or incorrect units)

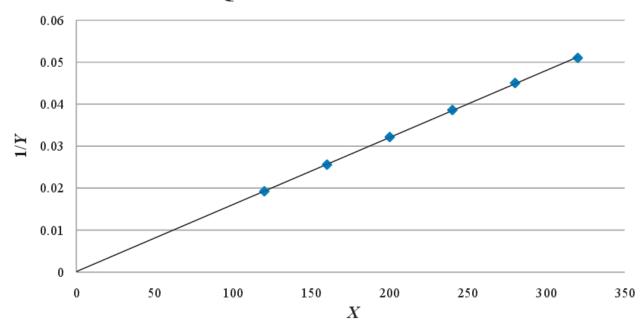
Explain how these results verify the laws of equilibrium. forces up = forces down (= 10.3 N)

total clockwise moments \approx total anticlockwise moments

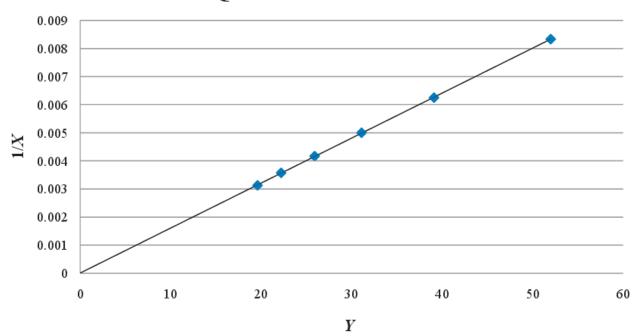
4+3

2. In an experiment to verify Boyle's law, a student took the set of readings given in the table below.

	X	120	160	200	240	280	320
	Y	52	39.1	31.1	25.9	22.2	19.6
	at physical quanti ssure and <u>volum</u>					(6	any order)
	ne the units used w . Nm ⁻² , kPa, Pa (a		sphere, cm I	Hg, torr <i>etc</i> .	4 .		· •
	w a labelled diagr			student used i	in the experim	nent.	
<u> </u>	labelled in cont elled pressure ga	0	aduations				
	elled means of a	0	sure or volur	ne			
me	cribe the procedu thod of changing d (new) pressure	g <u>pressure (e.</u>	<u>g. valve)</u> / <u>vo</u>		iston)	(stated o	r implied)
	the data in the tab		appropriate gi	aph on graph	paper.		
	el axes correctly t six points corre			(-1	for each inc	correctly plot	tted point)
	ight line with go		on		<i>je. each</i> me	Servery prov	point)
					(−1 fo	or inappropri	iate scale)


X	120	160	200	240	280	320
1/X	0.0083	0.00625	0.005	0.0042	0.0036	0.0031
Y	52	39.1	31.1	25.9	22.2	19.6
1/Y	0.019	0.026	0.032	0.039	0.045	0.051

Explain how your graph verifies Boyle's law.


straight line through the origin implies <u>p inversely proportional to V</u> / $\underline{p \propto \frac{1}{v}}$ / $\underline{pV \text{ constant}}$

3

Question 2: X vs 1/Y

Question 2: *Y* vs 1/*X*

6. (i) State Newton's law of universal gravitation.

force proportional to product of masses	// $F \propto \frac{m_1 m_2}{d^2}$ / $F = \frac{G m_1 m_2}{d^2}$	3
inversely proportional to square of distance	e // correct notation given	3

(ii) Explain what is meant by angular velocity. Derive an equation for the angular velocity of an object in terms of its linear velocity when the object moves in a circle.

rate of change of angle //
$$\frac{\theta}{t}$$
 and correct notation given
 $\omega = \frac{\theta}{t}$ (stated or implied) 3
 $\omega = \frac{vt}{rt} / \frac{v}{r}$ 3

The International Space Station (ISS), shown in the photograph, functions as a research laboratory and a location for testing of equipment required for trips to the moon and to Mars. The ISS orbits the earth at an altitude of 4.13×10^5 m every 92 minutes 50 seconds.

(iii) Calculate (*a*) the angular velocity, (*b*) the linear velocity, of the ISS.

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2\pi}{5570} / 1.1 \times 10^{-3} \,\mathrm{s}^{-1}$$
(-1 for omission of or incorrect units) 3

(iv) Name the type of acceleration that the ISS experiences as it travels in a circular orbit around the earth. centripetal / gravitational

What force provides this acceleration? gravitational

(do not accept ''gravity'')

3

3

3

3

5

(v) Calculate the attractive force between the earth and the ISS. mu^2

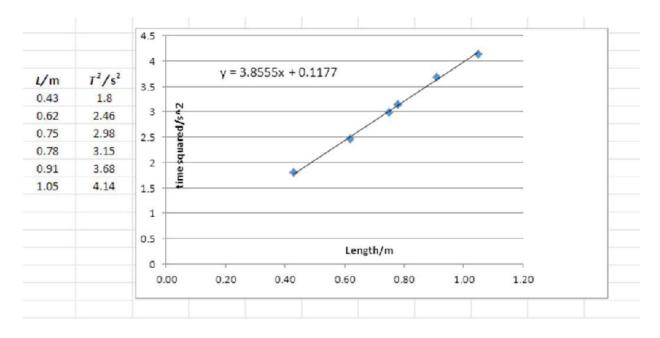
$$F = \frac{mv}{r} // F = mr\omega^{2}$$

$$F = 3.884 \times 10^{6} \text{ N}$$
(-1 for omission of or incorrect units) 3

Hence or otherwise, calculate the mass of the earth.

$$F = \frac{GmM}{r^2} \qquad //T^2 = \frac{4\pi^2 r^3}{GM} \qquad //g = \frac{GM}{r^2} \qquad 3$$
$$M = \frac{Fr^2}{Gm} \qquad //M = \frac{4\pi^2 r^3}{GT^2} \qquad //M = \frac{(8.63)r^2}{G} \qquad 3$$

$$M = 5.95 \times 10^{24}$$
 kg (-1 for omission of or incorrect units)

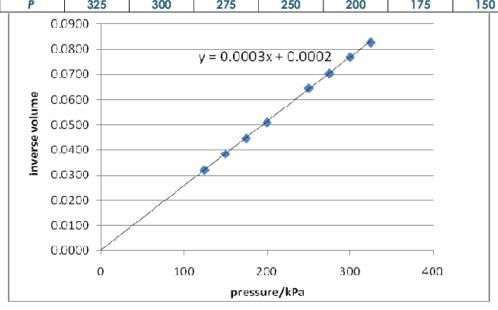

- (vi) If the value of the acceleration due to gravity on the ISS is 8.63 m s⁻², why do occupants of the ISS experience apparent weightlessness?
 they are in freefall // ISS accelerating at the same rate as occupants
- (vii) A geostationary communications satellite orbits the earth at a much higher altitude than the ISS. What is the period of a geostationary communications satellite? 1 day

(mass of ISS = 4.5×10^5 kg; radius of the earth = 6.37×10^6 m)

Describe how the student obtained a value for the length of the pendulum and its corresponding periodic time. measure length (l) from fixed point to top of bob (using metre stick) 3 measure $\frac{\text{diameter}/\text{radius}}{\text{length} = l + r}$ (stated or implied) reference to metre rule and Vernier calipers (or micrometer)

measure time for n oscillations divide (total time) by n

Draw the appropriate graph on this examination paper and use it to calculate a value for g.


correct method for slope correct slope value $(3.47 \le m \le 4.14 \text{ s}^2 \text{ m}^{-1})$	(-1 if (0,0) chosen as point on graph)	3 6
$g = 4\pi^2 \frac{1}{r^2}$ state/imply value for g (9.5 \le g \le 11.0 m s ⁻²)	(-1 for omission of or incorrect units)	3 3

Give two factors that affect the accuracy of the measurement of the periodic time.

Number of oscillations selected / the precision of the timer / repetition (of measurement for average) / smaller % error in T with longer lengths / nature of the string e.g. 'inextensible string'

any two factors 4+3

Draw a labelled diagram of the apparatus used in the experiment.									
gas contai	gas container, pressure gauge, scale for reading volume, means of adjusting p or V , e.g. pump/valve (-1 if no label) 3 marks per component 4								4 × 3
How was the pressure of the gas varied during the experiment?									
pump // re	pump // rotate wheel/screw // move piston/plunger // adjust liquid level in reservoir tube //open valve								3
Describe h	ow the pressu	re and the v	olume of the	gas were me	asured.				
(pressure)	from the (Be	ourdon) gau	ge/pc screen	: (volume	e) from the s	cale on the g	gas containe	r/syringe	2×2
Why shoul	d there he a	lalar hatmaa	a directing th	ha nnaccuna c	f the rec and	l na condin a it	a walina?		
why shou	d there be a o	ielay betweel	n acqusting t	ne pressure o	a the gas and	i recorcing it	s value :		
allow for g	gas <u>to cool</u> / <u>t</u>	o reach ther	mal equilibr	<u>ium</u> // allov	v oil (level)	to settle			3
	table graph t w your grapl			etween the p	ressure and t	he volume of	a fixed mass	s of gas.	
label axes	correctly on	graph paper	•						3
plot six po	ints correctly	у		(-1 pe	er each incorre	ect point; –1 n	nark if inappro	opriate scale)	3
straight lir	ne								3
good distr	ibution								3
straight line through the origin							3		
$p \alpha \frac{1}{V}$ // $p V = \text{constant}$						3			
V/cm^3	12.1	13.0	14.2	15.5	19.6	22.4	26.0	31.1]
1/V	0.0826	0.0769	0.0704	0.0645	0.0510	0.0446	0.0385	0.0322]
Р	325	300	275	250	200	175	150	125	

 (a) State the law of flotation.
 (when a body floats,) its weight equals the weight of fluid/liquid/water displaced
 (-1 if 'weight' term not used)

4

3

Question 8

(b) The head of a thumbtack has an area of 500 mm². Its point has an area of 0.3 mm². The pressure exerted at the head of the thumbtack is 12 Pa. What is the pressure exerted at the point of the thumbtack?

(at head:)
$$F = P \times A / F = 12(500 \times 10^{-6}) / F = 6.0 \times 10^{-3}$$
 (N)
(at point:) $P = \frac{12(500 \times 10^{-6})}{(0.3 \times 10^{-6})} / 2.0 \times 10^{4}$ Pa (no penalty for units) 3

Question 9 Question 6	
State Newton's law of universal gravitation. force proportional to product of masses $//$ correct relationship for F , masses and d	3
inversely proportional to square of distance // correct notation (-1 for each one omitted)	3
The international space station (ISS) moves in a circular orbit around the equator at a height of 400 km. What type of force is required to keep the ISS in orbit?	
centripetal (force) / gravitational (force)	3
What is the direction of this force? towards the centre (of the orbit) / inwards / towards the earth	3
towards the centre (of the ofoil) / inwards / towards the card	5
Calculate the acceleration due to gravity at a point 400 km above the surface of the earth. $GM = gR^2$ // $g \propto \frac{1}{p^2}$	5
A	3
$g_1 = \frac{GM}{R^2} \qquad \qquad // \frac{g_1}{g} = \frac{R^2}{R_1^2}$	
$g_1 = 8.564 \approx 8.6 \text{ m s}^{-2} // g_1 = 8.6898 \approx 8.7 \text{ m s}^{-2}$ (not awarded if h omitted) (-1 for omission of or incorrect units)	3

An astronaut in the ISS appears weightless. Explain why.

any correct relevant answer, e.g. he/she is in a state of free-fall; there is no contact force; force of gravity is the only force acting; force of gravity cannot be felt; etc.

Derive the relationship between the period of the ISS, the radius of its orbit and the mass of the earth.

$$\frac{GMm}{R^2} = \frac{mv^2}{R} \qquad T = \frac{2\pi}{\omega} \qquad 3$$

$$GM = v^2 R \qquad T^2 = \frac{4\pi^2}{2} \qquad T^2 = \frac{4\pi^2 R^2}{2} \qquad 3$$

Calculate the period of an orbit of the ISS.

$$T^{2} = \frac{4\pi^{2} (6.8 \times 10^{6})^{3}}{(6.6 \times 10^{-11})(6.0 \times 10^{24})} / 3.1347 \times 10^{7}$$
 (not awarded if *h* omitted)

$$T = 5.599 \times 10^{3} \text{ s} / 93.31 \text{ min} / 1.56 \text{ h}$$
 (-1 for omission of or incorrect units) 3

After an orbit, the ISS will be above a different point on the earth's surface. Explain why.ISS has a different period to that of the earth's rotation / not in geostationary orbit /etc.any one6

How many times does an astronaut on the ISS see the sun rise in a 24 hour period?

$$(24 \div 1.56 + 1) / 16 ($$
 sunrises $) / 15 ($ sunrises $) 6$

3

(gravitational constant = 6.6×10^{-11} N m² kg⁻²; mass of the earth = 6.0×10^{24} kg; radius of the earth = 6.4×10^{6} m)

Quest

stion 10								
that the c	1 investigated the laws of equilibrium for a entre of gravity of the metre stick was at th he student find:					ick. The stu	dent found	
	ntre of gravity, stick on a pivot (e.g. wedge, thread suppor	rt, bench ed	ge, etc.)	/ correct di	agram			б
(ii) the wo	eight, of the metre stick?							
	place on a <u>newton balance</u> / <u>weighing scales</u> (-1 if no reference to weight / N/g) 6							
•	e centre of gravity of the metre stick not at the stick not at the stick not at the stick of the			ot (exactly)	at one end			3
	nt applied vertical forces to the metre sticl	2		until the me	tre stick w	as in equilibi	ium.	
	he student know that the metre stick was in	-						
(metre sti	ck was) at rest / stationary / balanced / h	orizontal /	level //	"the forces	and the mo	ments both t	oalance"	4
The stude	nt recorded the following data.							
	position on metre stick/cm	11.5	26.2	38.3	70.4	80.2		
	magnitude of force /N	2.0	4.5	3.0	5.7	4.0		
	direction of force	down	սթ	down	սթ	down		
G	lculate:		F					
G	(i) the net force acting on the metre	stick						
	$F_{\rm up} = 4.5 + 5.7 = 10.2$ and $F_{\rm do}$	$_{\rm wn} = 2 + 3$	+1.2 +4 =	10.2 N / no	et force = 0			3
	 (ii) the total clockwise moment abou (For any axis e.g. through zero:) 	t a vertical a	axis of the	metre stick				
	C.T.M. = 2(0.115) + 3(0.383) + 1.2	(0.504) +4	0(0.802)					
		· ·	· ·	48+3.208	or 5.1918	Nm or 5.2	N m	6
	(iii) the total anti-clockwise moment	about a vert	ical axis o	f the metre	stick.			
						_		-

(for same axis), A.C.T.M. = 4.5(0.262) +5.7(0.704) or 5.1918 N m or 5.2 N m (For (ii) and (iii), penalise once only: -1 for omission of or incorrect units)

[State/imply: turning moment = force x (perp) distance award 6 marks if zero credit gained for (ii) and (iii) above]

Use these results to verify the laws of equilibrium. net turning moment is zero / C.(T.) M = A.C.(T.).M net force is zero / $F_{up} = F_{down}$ // any one law

(final 6 marks awarded only for verification of laws arising from preceding calculations)

Question 11

(a) State Archimedes' principle.

upthrust / buoyancy / (apparent) loss in weight (in fluid) equals weight of fluid/ liquid/water displaced

6

6

Question 1

 (b) Why is it easier to turn a nut using a longer spanner than a shorter one? (7) greater torque / (turning) moment /turning effect 'distance from effort to fulcrum is greater' (4) 	7
3	
(a) Define pressure. (6)	
force // F/A	3
per unit area // explain notation	3
Is pressure a vector quantity or a scalar quantity? Justify your answer. (6)	
scalar	3
it acts in all directions / it has no direction	3
State Boyle's law. (6) P α 1/V // PV = constant for a fixed mass of gas at constant temperature	3 3
A small bubble of gas rises from the bottom of a lake. The volume of the bubble increases threefold when it reaches the surface of the lake where the atmospheric pressure is 1.01×10^5 Pa. The temperature of the lake is 4 °C. Calculate	
 (i) the pressure at the bottom of the lake; (ii) the depth of the lake. (10) (acceleration due to gravity = 9.8 m s⁻²; density of water = 1.0 × 10³ kg m⁻³) 	
pressure at bottom (= 3 times pressure at top) = 3.03×10^5 Pa	3
pressure at bottom <u>due to water</u> = 2.02×10^5 Pa	3
$P=h\rho g$	2
$h (= P / \rho g) = 2.02 \times 10^5 / [(1.0 \times 10^3)(9.8)] / 20.6(1) m$ (-1 for omission of or incorrect unit)	2

Question 14

(a) A container contains 5.0 kg of water. If the area of the base of the container is 0.5 m^2					
calculate the pressure at th	e base of the container due to the water. (7)	$(g = 9.8 \text{ m s}^{-2})$			
P = F/A = [(5.0)(9)]	.8)/(0.5)]		4		
$P = 98 \operatorname{Pa}$	(-1 for omission of or incorrect unit)		3		

Question 15

(b) State Boyle's law. (7)	
pressure is inversely proportional to volume / $p \alpha 1/V$ / $pV = k$	4
for a definite mass of gas at constant temperature	3

Question 16

(a) State Boyle's law.

pressure is inversely proportional to volume // $P \alpha \frac{1}{V}$ // $P V = \text{constant} (= k)$	4
fixed mass of gas at constant temperature	3