(a)	$\begin{gathered} f(x)=2 x^{3}+5 x^{2}-4 x-3 \\ f(-3)=2(-3)^{3}+5(-3)^{2}-4(-3) \\ -3 \\ =-54+45+12-3 \\ f(-3)=0 \\ \Rightarrow(x+3) \text { is a factor } \\ 2 x^{2}-x-1 \\ x + 3 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 4 x - 3 } \\ \underline{2 x^{3}+6 x^{2}} \\ -x^{2}-4 x \\ \frac{-x^{2}-3 x}{-x-3} \\ \frac{-x-3}{2} \\ f(x)=(x+3)\left(2 x^{2}-x-1\right) \\ f(x)=(x+3)(2 x+1)(x-1) \\ x=-3 \quad x=-\frac{1}{2} \quad x=1 \end{gathered}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: - Shows $f(-3)=0$ High Partial Credit: - quadratic factor of $f(x)$ found Note: No remainder in division may be stated as reason for $x=-3$ as root
(b)	$\begin{gathered} y=2 x^{3}+5 x^{2}-4 x-3 \\ \frac{d y}{d x}=6 x^{2}+10 x-4=0 \\ 3 x^{2}+5 x-2=0 \\ (x+2)(3 x-1)=0 \\ 3 x-1=0 \quad x+2=0 \\ x=\frac{1}{3} \quad x=-2 \\ f\left(\frac{1}{3}\right)=\frac{-100}{27} \quad f(-2)=9 \\ \operatorname{Max}=(-2,9) \quad \text { Min }=\left(\frac{1}{3}, \frac{-100}{27}\right) \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - $\frac{d y}{d x}$ found (Some correct differentiation) High Partial Credit - roots and one y value found Note: One of Max/Min must be identified for full credit
(c)	$a>\frac{100}{27}$ or $a<-9$	Scale 5B (0, 3, 5) Partial Credit: - one value identified - no range identified (from 2 values)

Q7	Model Solution - 40 Marks	Marking Notes
(a) (i)	$\begin{gathered} v=\frac{4}{3} \pi r^{3} \Rightarrow \frac{d v}{d r}=4 \pi r^{2} \\ \frac{d v}{d t}=250 \mathrm{~cm}^{3} / \mathrm{s} \\ \frac{d r}{d t}=\frac{d r}{d v} \cdot \frac{d v}{d t}=\frac{1}{4 \pi r^{2}} \cdot 250 \\ \frac{d r}{d t}=\frac{250}{4 \pi 400}=\frac{5}{32 \pi} \mathrm{~cm} / \mathrm{s} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - work towards $\frac{d v}{d r}$ or $\frac{d v}{d t}$ or $\frac{d r}{d t}$ High Partial Credit - correct expression for $\frac{d r}{d t}$
(ii)	$\begin{gathered} a=4 \pi r^{2} \Rightarrow \frac{d a}{d r}=8 \pi r \\ \frac{d a}{d t}=\frac{d a}{d r} \cdot \frac{d r}{d t}=8 \pi r \cdot \frac{5}{32 \pi} \\ =\frac{5(20)}{4} \\ =25 \mathrm{~cm}^{2} / \mathrm{s} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - work towards $\frac{d a}{d r}$ or $\frac{d a}{d t}$ High Partial Credit - correct expression for $\frac{d a}{d t}$
(b) (i)	$\begin{gathered} -x^{2}+10 x=0 \\ x(-x+10)=0 \\ x=0 \quad \text { or } x=10 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - quadratic equation formed - gets $x=0$ only High Partial Credit - quadratic factorised Note: $f^{\prime}(x)=0 \Rightarrow 2 x-10=0 \Rightarrow x=5$ merits 0 marks
(ii)	$\begin{aligned} & \frac{1}{10-0} \int_{0}^{10}\left(-x^{2}+10 x\right) d x \\ & \quad=\frac{1}{10}\left[\frac{-x^{3}}{3}+5 x^{2}\right]_{0}^{10} \\ & =\frac{1}{10}\left[\left(\frac{-1000}{3}+500\right)-0\right] \\ & =\frac{-100}{3}+50=\frac{50}{3} \mathrm{~m} \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - integration set up High Partial Credit - correct integration with some substitution

Q8	Model Solution - 55 Marks	Marking Notes
(a) (i)	$\begin{gathered} f(x)=-0 \cdot 274 x^{2}+1 \cdot 193 x+3 \cdot 23 \\ f^{\prime}(x)=-0 \cdot 548 x+1 \cdot 193=0 \\ x=2 \cdot 177 \mathrm{~m} \end{gathered}$ $\begin{gathered} f(2 \cdot 177)=-0 \cdot 274(2 \cdot 177)^{2} \\ +1 \cdot 193(2 \cdot 177)+3 \cdot 23 \\ =-1 \cdot 2986+2 \cdot 5972+3 \cdot 23 \\ =4 \cdot 529 \mathrm{~m} \\ \text { or } \\ -0 \cdot 274\left(x^{2}-\frac{1193}{274} x-\frac{1615}{137}\right) \\ -0 \cdot 274\left(x-\frac{1193}{548}\right)^{2}+4.5285 \\ \text { Max Height }=4 \cdot 529 \mathrm{~m} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - any correct differentiation - effort made at completing square - trial and error with more than one value of x tested High Partial Credit - x value correct Note: if correct answer by trial and error, must show points on each side of max point to be lower to earn full credit
(ii)	$\begin{gathered} \tan \theta=-0 \cdot 548(4 \cdot 5)+1 \cdot 193 \\ \tan \theta=-1 \cdot 273 \\ \theta=51 \cdot 8^{\circ}=52^{\circ} \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - tan Note: right angled triangles may appear in diagram given in equation
(iii)	$\begin{gathered} \text { Map } A \rightarrow C \\ (-0.5,2 \cdot 565) \rightarrow(0,2) \\ 2.177-(-0.5)=2.677 \\ 4.529-0.565=3.964 \\ (2 \cdot 177,4.529) \rightarrow(2.677,3.964) \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - $(-0.5,2 \cdot 565) \rightarrow(0,2)$

$$
g(x)=a x^{2}+b x+c
$$

$$
C(0,2) \in g(x)=>c=2
$$

$B(4 \cdot 5,3 \cdot 05) \in g(x)$
$3 \cdot 05=\mathrm{a}(4 \cdot 5)^{2}+\mathrm{b}(4 \cdot 5)+2$
$\Rightarrow 20 \cdot 25 a+4.5 b=1.05 \quad$... (i)
$g^{\prime}(x)=2 a x+b=0$
$\Rightarrow 2 a(2 \cdot 677)+b=0$
$5 \cdot 354 a+b=0$

From (i) and (ii)
$a=-0.273$
$b=1.462$

$$
g(x)=-0.273 x^{2}+1 \cdot 462 x+2
$$

[Note: a third equation that could be used is $3.964=a(2 \cdot 677)^{2}+b(2 \cdot 677)+2 \ldots$ (iii) $]$

Or

Equation of parabola with vertex (h, k) :

$$
g(x)=a(x-h)^{2}+k
$$

$C(0,2)$ on curve: $(h, k)=(2 \cdot 677,3.964)$

$$
\begin{gathered}
2=a(-2 \cdot 677)^{2}+3.964 \\
-1 \cdot 964=a(7 \cdot 166329) \\
a=-0.27405=-0.274
\end{gathered}
$$

Parabola:

$$
\begin{gathered}
g(x)=-0.274\left[(x-2.677)^{2}\right]+3.964 \\
\text { or } \\
g(x)=f(x-0.5)-0.565 \\
g(x)=-0.274(x-0.5)^{2}+1.193(x-0.5) \\
\quad+3.23-0.565 \\
g(x)=-0.274 x^{2}+1.467 x+2
\end{gathered}
$$

Scale 10D ($0,2,5,8,10$)
Low Partial Credit

- c value found
- relevant equation in a, b and/or c

Mid Partial Credit

- formulated correctly any two equations

High Partial Credit

- formulated correctly any three equations

Note: $a x^{2}+b x+c$ not in an equation merits 0 marks

Or

Scale 10D (0, 2, 5, 8, 10)
Low Partial Credit

- equation of curve
- use of C

Mid Partial Credit

- using peak value

High Partial Credit

- value of a found

Question 4 (2015)

$f(x)=x^{3}-3 x^{2}-9 x+11$
$f(1)=1^{3}-3(1)^{2}-9+11=0$
$\Rightarrow x=1$ is a solution.
$(x-1)$ is a factor
$x^{2}-2 x-11$
$\begin{aligned} & x^{3}-3 x^{2}-9 x+11\end{aligned}$

$$
\begin{aligned}
& x^{3}-x^{2} \\
& -2 x^{2}-9 x+11 \\
& (x-1)\left(x^{2}+A x-11\right)=x^{3}-3 x^{2}-9 x+11 \\
& \frac{-2 x^{2}+2 x}{-11} x+11 \\
& -11 x+11 \\
& \text { or } \quad \Rightarrow x^{3}+A x^{2}-x-x^{2}-A x+1=x^{3}-3 x^{2}-9 x+11 \\
& \Rightarrow A-1=-3 \\
& \Rightarrow A=-2
\end{aligned}
$$

or

	x^{2}		$-2 x$
-11			
x	x^{3}	$-2 x^{2}$	$-11 x$
-1	$-x^{2}$	$2 x$	11

Hence, other factor is $x^{2}-2 x-11$

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-11)}}{2(1)}=\frac{2 \pm \sqrt{48}}{2}=\frac{2 \pm 4 \sqrt{3}}{2}=1 \pm 2 \sqrt{3}
$$

Solutions: $\{1,1+2 \sqrt{3}, 1-2 \sqrt{3}\}$

$$
\begin{aligned}
& x=\sqrt{x+6} \\
& \Rightarrow x^{2}=x+6 \\
& \Rightarrow x^{2}-x-6=0 \\
& \Rightarrow(x+2)(x-3)=0 \\
& \Rightarrow x=-2, \quad x=3 \\
& x=-2: \quad-2 \neq \sqrt{-2+6}=\sqrt{4}=2 \times \\
& x=3: \quad 3=\sqrt{3+6}=\sqrt{9}=3
\end{aligned}
$$

