Geometry Terms

You must learn these off by heart, and in some cases, be able to give examples.

TERM	DEFINITION
Axiom	A statement that we accept without any proof
Theorem	A rule that has been proved by following a certain number of logical steps or by using a previous theorem or axiom you already know
Proof	A series of logical steps that we use to prove a theorem
Corollary	A statement that follows readily from a previous theorem
Converse	The reverse of a theorem
	Eg. <u>Statement:</u> The interior angles of a square each measure 90° (TRUE)
	<u>Converse:</u> If the interior angles each measure 90°, then the figure is a square (FALSE)
Implies	Used in a proof when a statement follows on from previous proved statements
	<u>Symbol:</u> ⇒

TERM	DEFINITION	
Is equivalent to	Two things are equivalent if they have the same value but different forms eg. $\frac{2}{3} = \frac{4}{6}$ or $\$2 = \1.50	
If and only if	Eg. If and only if means that X will only be true when Y is true and Y will only be true when X is true. An example would be "The light will come on	
	if and only if the switch is in the on position" ↔ Can be shortened to iff	
Proof by	A proof where an assumption is made. Then,	
contradiction	by using valid arguments, a statement is arrived at which is clearly false, so the original assumption must have been false.	
	We prove that a statement or assumption is true by showing that the statement or	
	assumption being false would imply a	
	contradiction (impossibility).	
Prove that $\sqrt{2}$ is irrati	<u>Prove that $\sqrt{2}$ is irrational</u>	

Assume the contrary: $\sqrt{2}$ is rational

there exists integers p and q with no common factors such that:

$\frac{p}{2} = \sqrt{2}$ (Square both sides)	$p^2 = 4k^2$ (Square both sides)
q p^2	$p^2 = 2q^2$ and $p^2 = 4k^2$
$\Rightarrow \frac{p}{a^2} = 2$	$\Rightarrow 4k^2 = 2q^2$ (Divide both sides by 2)
$q \rightarrow p^2 - 2a^2$	$\Rightarrow 2k^2 = q^2$
$\Rightarrow p - 2q$	Then similarly $q = 2m$ for some m
$\Rightarrow p^2$ is even (it's a multiple of 2)	$\Rightarrow p = 2k \Rightarrow p$ has a factor of 2 in common
$\Rightarrow p \text{ is even } (\dots even = even)$	$\Rightarrow \frac{d}{d} = \frac{d}{2m} \Rightarrow \frac{d}{d}$ has a factor of 2 in common.
$\therefore p = 2k$ for some k	This contradicts the original assumption.
	<u>√2 is irrational</u> Q.E.D.

Example:

Triangle ABC has no more than one right angle.

Can you complete a proof by contradiction for this statement?

- 1. Assume $\angle A$ and $\angle B$ are right angles
- 2. We know $\angle A + \angle B + \angle C = 180^{\circ}$
- 3. By substitution $90^{\circ} + 90^{\circ} + \angle C = 180^{\circ}$
- 4. $\therefore \ \angle C = 0^0$ which is a contradiction
- 5. $\therefore \ \angle A$ and $\angle B$ cannot both be right angles
- 6. \Rightarrow A triangle can have at most one right angle

