Geometry Terms

You must learn these off by heart, and in some cases, be able to give examples.

TERM	DEFINITION		
Axiom	$\begin{array}{l}\text { A statement that we accept without any } \\ \text { proof }\end{array}$		
Theorem	$\begin{array}{l}\text { A rule that has been proved by following a } \\ \text { certain number of logical steps or by using a } \\ \text { previous theorem or axiom you already know }\end{array}$		
Proof	$\begin{array}{l}\text { A series of logical steps that we use to } \\ \text { prove a theorem }\end{array}$		
A statement that follows readily from a			
previous theorem		$\}$	The reverse of a theorem
:---			
Eg.			
Statement: The interior angles of a square			
each measure 90° (TRUE)			
Converse: If the interior angles each			
Impasure 90, then the figure is a square			
(FALSE)			
Imed in a proof when a statement follows on			
from previous proved statements			
Symbol: \Rightarrow			

TERM	DEFINITION
Is equivalent to	Two things are equivalent if they have the same value but different forms eg. $\frac{2}{3}=\frac{4}{6}$ or $\$ 2$ = € 1.50
If and only if	Eg. If and only if means that X will only be true when Y is true and Y will only be true when X is true. An example would be "The light will come on if and only if the switch is in the on position" \Leftrightarrow Can be shortened to iff
Proof by contradiction	A proof where an assumption is made. Then, by using valid arguments, a statement is arrived at which is clearly false, so the original assumption must have been false. We prove that a statement or assumption is true by showing that the statement or assumption being false would imply a contradiction (impossibility).
Prove that $\sqrt{2}$ is irrational	
Assume the contrary: $\sqrt{ } 2$ is rational	
there exists integers p and q with no common factors such that:	
$\frac{p}{q}=\sqrt{2}$ (Squa p^{2}	$\text { sides) } \quad \begin{gathered} p^{2}=4 k^{2} \quad \text { (Square both sides) } \\ p^{2}=2 q^{2} \text { and } p^{2}=4 k^{2} \end{gathered}$
$\Rightarrow \frac{p}{q^{2}}=2$	$\Rightarrow 4 k^{2}=2 q^{2} \quad$ (Divide both sides by 2) $\Rightarrow 2 k^{2}=q^{2}$
$\Rightarrow p^{2}=2 q^{2}$	Then similarly $q=2 m$ for some m
$\Rightarrow p^{2}$ is even (.....it's a multiple of 2)	ultiple of 2) even) $\quad \Rightarrow \frac{p}{q}=\frac{2 k}{2 m} \Rightarrow \frac{p}{q}$ has a factor of 2 in common
$\therefore p=2 k$ for some	This contradicts the original assumption. $\sqrt{ } 2$ is irrational \quad Q.E.D.

Theorem 20: Proof by Contradiction

(i) Each tangent is perpendicular to the radius that goes to the point of contact.

Suppose the point of contact is P and the tangent t is not on the perpendicular to $O P$
Let the perpendicular to the tangent from O meet it at Q.
Pick R on $P Q$, on the other side of Q from P, with $|Q R|=|P Q|$
Then triangle $O Q R$ is congruent to triangle $O Q P$
$|O R|=|O P|$, so R is a second point where t meets the circle.
This contradicts the given fact that t is a tangent.
Thus t must be a perpendicular to $O P$, as required.

Example:
Triangle $A B C$ has no more than one right angle.
Can you complete a proof by contradiction for this statement?

1. Assume $\angle A$ and $\angle B$ are right angles
2. We know $\angle A+\angle B+\angle C=180^{\circ}$
3. By substitution $90^{\circ}+90^{\circ}+\angle C=180^{\circ}$
4. $\therefore \angle C=0^{\circ}$ which is a contradiction

5. $\therefore \angle A$ and $\angle B$ cannot both be right angles
6. \Rightarrow A triangle can have at most one right angle
