MarkingScheme

FunctionsH

Question 1 (2017)

Question 2 (2017)

(a)	$Se^{\cdot 1(0)} \times 10^6 = 1100000$ S = 1.1	 Scale 10B (0, 4, 10) Partial Credit equation in S with substitution
(b)	$p(5) = 1 \cdot 1e^{0 \cdot 1(5)} \times 10^{6}$ $= 1 \cdot 813593 \times 10^{6}$ $= 1813593$	 Scale 10B (0, 4, 10) Partial Credit substitution into formula for p(5)
(c)	$p(6) = 1 \cdot 1e^{0 \cdot 6} \times 10^{6}$ $p(5) = 1 \cdot 1e^{0 \cdot 5} \times 10^{6}$ $p(6) - p(5) = (1 \cdot 1e^{0 \cdot 6} - 1 \cdot 1e^{0 \cdot 5}) \times 10^{6}$ $= 0 \cdot 1907372 \times 10^{6}$ $= 190737$	 Scale 5C (0, 3, 4, 5) Low Partial Credit: substitution into formula for p(6) use of p(5) from previous part p(6) - p(5) written or implied High partial Credit Formulates p(6) - p(5) with some substitution

(d)	$q(t) = 3 \cdot 9e^{kt} \times 10^{6}$ $3709795 = 3 \cdot 9e^{k} \times 10^{6}$ $\frac{3 \cdot 709795}{3 \cdot 9} = e^{k}$ $\log_{e} \frac{3 \cdot 709795}{3 \cdot 9} = k$ $k = -0 \cdot 0499 = -0 \cdot 05$	 Scale 15C (0, 5, 10, 15) Low Partial Credit Either substitution into formula for k Verifies k value only. High Partial Credit relevant equation in k
(e)	$p(t) = q(t)$ $1 \cdot 1e^{0 \cdot 1t} \times 10^{6} = 3 \cdot 9e^{-0 \cdot 05t} \times 10^{6}$ $1 \cdot 1e^{0 \cdot 1t} = 3 \cdot 9e^{-0 \cdot 05t}$ $\frac{e^{0 \cdot 1t}}{e^{-0 \cdot 05t}} = \frac{3 \cdot 9}{1 \cdot 1}$ $e^{0 \cdot 15t} = \frac{39}{11}$ $\ln \frac{39}{11} = 0 \cdot 15t$ $t = 8 \cdot 44 \text{ years}$ In 2018 both populations equal	<pre>Scale 5C (0, 3, 4, 5) Low Partial Credit • p(t) = q(t) written or implied High Partial Credit • relevant equation in t</pre>
(f)	$\frac{1}{15} \int_{0}^{15} 3 \cdot 9e^{-0 \cdot 05t} \times 10^{6} dt$ $\frac{1}{15} \left[\frac{3 \cdot 9}{-0 \cdot 05} e^{-0 \cdot 05(15)} - \frac{3 \cdot 9}{-0 \cdot 05} e^{-0 \cdot 05(0)} \right]$ $\times 10^{6}$ $2 \cdot 743694 \times 10^{6}$ 2743694	 Scale 5C (0, 3, 4, 5) Low Partial Credit: integral formulated (with limits) High Partial Credit: integration with full substitution
(g)	$q(t) = 3.9e^{-0.05t} \times 10^{6}$ $q'(t) = -0.05(3.9e^{-0.05t} \times 10^{6})$ $q'(8) = -0.05(3.9e^{-0.05(8)} \times 10^{6})$ $= -130712$	<pre>Scale 5C (0, 3, 4, 5) Low Partial Credit • q'(t) High Partial Credit • q'(t) fully substituted</pre>

(b) (i)	$f(t) = a + b \cos ct$ Range: $[(a + b), (a - b)]$ $a + b = 5 \cdot 5$ $a - b = 1 \cdot 7$ $a = 3 \cdot 6$ $b = 1 \cdot 9$	 Scale 10C (0, 5, 8, 10) Low Partial Credit: one equation in a and b Range in terms of a and b High Partial Credit: a or b found Note: Accept correct answer without work 		
(b) (ii)	Time between two successive high tides is: $12\frac{34}{60}$ hours period = $12\frac{34}{60}$ period = $\frac{2\pi}{c}$ $c = \frac{2\pi}{12\frac{34}{60}} = 0.4999 = 0.5$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Period identified or $\frac{2\pi}{c}$ or 12.34 High Partial Credit: • equation in c with some substitution		
(c)	$5 \cdot 2 = a + b \cos ct$ $5 \cdot 2 = 3 \cdot 6 + 1 \cdot 9 \cos 0 \cdot 5t$ $0 \cdot 5t = \cos^{-1} \frac{1 \cdot 6}{1 \cdot 9} = 0 \cdot 569621319$ $0 \cdot 5t = 0 \cdot 5696$ $t = 1 \cdot 139 \text{ hours}$ (before and after high tide at 14:34) Time = 1 hour 8 minutes	 Scale 5C (0, 3, 4, 5) Low Partial Credit: equation with some substitution High Partial Credit: solution for t Note: Low partial at most if formula not used 		
	Times: $(14:34) \pm 1$ hour 8 min \Rightarrow 13:26 and 15:42			

Question 4 (2016)

(i) (ii) f(x) = 3x - 2 $f^{-1}(x) = \frac{x+2}{3}$ Scale 5B (0, 2, 5) <i>Partial Credit</i> • any relevant transpose	
--	--

Question 5 (2016)

Q7	Model Solution – 40 Marks	Marking Notes		
(a) (i)	$v = \frac{4}{3}\pi r^3 \Longrightarrow \frac{dv}{dr} = 4\pi r^2$ $\frac{dv}{dt} = 250 \text{ cm}^3/\text{s}$ $\frac{dr}{dt} = \frac{dr}{dv} \cdot \frac{dv}{dt} = \frac{1}{4\pi r^2} \cdot 250$ $\frac{dr}{dt} = \frac{250}{4\pi 400} = \frac{5}{32\pi} \text{ cm/s}$	Scale 10C (0, 3, 7, 10) Low Partial Credit • work towards $\frac{dv}{dr}$ or $\frac{dv}{dt}$ or $\frac{dr}{dt}$ High Partial Credit • correct expression for $\frac{dr}{dt}$		
(ii)	$a = 4\pi r^{2} \Longrightarrow \frac{da}{dr} = 8\pi r$ $\frac{da}{dt} = \frac{da}{dr} \cdot \frac{dr}{dt} = 8\pi r \cdot \frac{5}{32\pi}$ $= \frac{5(20)}{4}$ $= 25 \text{ cm}^{2}/\text{s}$	Scale 10C (0, 3, 7, 10) Low Partial Credit • work towards $\frac{da}{dr}$ or $\frac{da}{dt}$ High Partial Credit • correct expression for $\frac{da}{dt}$		
(b) (i)	$-x^{2} + 10x = 0$ x(-x + 10) = 0 x = 0 or x = 10	Scale 10C (0, 3, 7, 10) Low Partial Credit • quadratic equation formed • gets $x = 0$ only High Partial Credit • quadratic factorised Note: $f'(x) = 0 \Rightarrow 2x - 10 = 0 \Rightarrow x = 5$ merits 0 marks		
(ii)	$\frac{1}{10-0} \int_0^{10} (-x^2 + 10x) dx$ $= \frac{1}{10} \left[\frac{-x^3}{3} + 5x^2 \right]_0^{10}$ $= \frac{1}{10} \left[\left(\frac{-1000}{3} + 500 \right) - 0 \right]$ $= \frac{-100}{3} + 50 = \frac{50}{3} \text{ m}$	Scale 10C (0, 3, 7, 10) <i>Low Partial Credit</i> • integration set up <i>High Partial Credit</i> • correct integration with some substitution		

Question 6 (2016)

Q8	Model Solution – 55 Marks	Marking Notes
(a)	1 I I I I I I I I I I I I I I I I I I I	
(i)	$f(x) = -0.274x^{2} + 1.193x + 3.23$ f'(x) = -0.548x + 1.193 = 0 x = 2.177 m $f(2.177) = -0.274(2.177)^{2}$ + 1.193(2.177) + 3.23 = -1.2986 + 2.5972 + 3.23 = 4.529 m or $-0.274(x^{2} - \frac{1193}{274}x - \frac{1615}{137})$ $-0.274(x - \frac{1193}{548})^{2} + 4.5285$ Max Height = 4.529 m	 Scale 10C (0, 3, 7, 10) Low Partial Credit any correct differentiation effort made at completing square trial and error with more than one value of x tested High Partial Credit x value correct Note: if correct answer by trial and error, must show points on each side of max point to be lower to earn full credit
(ii)	$\tan \theta = -0.548(4.5) + 1.193$ $\tan \theta = -1.273$ $\theta = 51.8^{\circ} = 52^{\circ}$	Scale 5B (0, 2, 5) Partial Credit • tan Note: right angled triangles may appear in diagram given in equation
(iii)	$Map \ A \to C$ $(-0.5, 2.565) \to (0, 2)$ $2.177 - (-0.5) = 2.677$ $4.529 - 0.565 = 3.964$ $(2.177, 4.529) \to (2.677, 3.964)$	Scale 5B (0, 2, 5) Partial Credit • $(-0.5, 2.565) \rightarrow (0, 2)$

$g(x) = ax^2 + bx + c$	Scale 10D (0, 2, 5, 8, 10)
$C(0,2) \in g(x) \Longrightarrow c = 2$	Low Partial Credit
	• <i>c</i> value found
$B(4.5, 3.05) \epsilon g(x)$	• relevant equation in <i>a</i> , <i>b</i> and/or <i>c</i>
$3.05 = a(4.5)^2 + b(4.5) + 2$	
$\Rightarrow 20.25a + 4.5b = 1.05$ (i)	<i>Mid Partial Credit</i>formulated correctly any two equations
g'(x) = 2ax + b = 0	Lish Dantial Credit
$\Rightarrow 2a(2.677) + b = 0$	 High Partial Credit formulated correctly any three equations
	• Tormulated correctly any three equations
5.354a + b = 0 (ii)	Note : $ax^2 + bx + c$ not in an equation mero 0 marks
From (i) and (ii)	
a = -0.273	
b = 1.462	
$g(x) = -0.273x^2 + 1.462x + 2$	
[Note: a third equation that could be used is	
$3.964 = a(2.677)^2 + b(2.677) + 2 \dots$ (iii)]	
Or	Or
Equation of parabola with vertex (h, k) :	
$g(x) = a(x-h)^2 + k$	Scale 10D (0, 2, 5, 8, 10)
C(0, 2) on curve: $(h, k) = (2.677, 3.964)$	Low Partial Credit
$2 = a(-2.677)^2 + 3.964$	equation of curve
-1.964 = a(7.166329)	• use of C
a = -0.27405 = -0.274	
Parabola:	Mid Partial Credit
$g(x) = -0.274[(x - 2.677)^2] + 3.964$	using peak value
or	High Dartial Cradit
g(x) = f(x - 0.5) - 0.565	 High Partial Credit value of a found
$g(x) = -0.274(x - 0.5)^2 + 1.193(x - 0.5)$	
$\frac{g(x)}{4} = \frac{6271(x + 0.5)}{4323} + \frac{1175(x + 0.5)}{455}$	
$g(x) = -0.274x^2 + 1.467x + 2$	

(b) (i)	G_5 =Female,Male,Female,Female,Male	Scale 5B (0, 2, 5) <i>Partial Credit</i> • one correct entry
(b) (ii)	$G_6 = G_5 + G_4 = 5 + 3 = 8$ $G_7 = G_6 + G_5 = 8 + 5 = 13$	Scale 10C (0, 3, 7, 10) Low Partial Credit • $G_6 = G_5 + G_4$ • $G_7 = G_6 + G_5$ • G_7 or G_6 correct • 8 and/or 13 without work High Partial Credit • correct substitution in both
(b) (iii)	$G_{3} = \frac{(1+\sqrt{5})^{3} - (1-\sqrt{5})^{3}}{2^{3}\sqrt{5}} = 2$ $(1+\sqrt{5})^{3} = (1+3\sqrt{5}+3\sqrt{5}^{2}+\sqrt{5}^{3})$ $= 16+8\sqrt{5}$ $(1-\sqrt{5})^{3} = (1-3\sqrt{5}+3\sqrt{5}^{2}-\sqrt{5}^{3})$ $= 16-8\sqrt{5}$ $G_{3} = \frac{6\sqrt{5}+2\sqrt{5}^{3}}{8\sqrt{5}}$ $= \frac{6+2\sqrt{5}^{2}}{8} = \frac{16}{8} = 2 \text{Q.E. D.}$	Scale 5B (0, 2, 5) Partial Credit • some correct substitution • using approximate value for $\sqrt{5}$ • $G_3 = 2$ • some effort at cubing Note: use of $\sqrt{5}$ as approximation, even if rounded off to 2 at end of work merits at most Partial Credit

(a) (i) Show that d = 0.

$$f(x) = 0 \cdot 0024x^{3} + 0 \cdot 018x^{2} + cx + d$$

$$f(0) = 0 + 0 + 0 + d = 0 \implies d = 0$$

(ii) Using the fact that P is the point (-5, 0.15), or otherwise, show that c = 0.

$$f(x) = 0 \cdot 0024 x^{3} + 0 \cdot 018 x^{2} + cx$$

$$f(-5) = 0 \cdot 0024(-5)^{3} + 0 \cdot 018(-5)^{2} + c(-5) = 0 \cdot 15$$

$$\Rightarrow 0 \cdot 15 - 5c = 0 \cdot 15 \Rightarrow c = 0$$

or

The plane lands horizontally at $O \Rightarrow f'(x) = 0$ when x = 0 $f'(x) = 0.0072x^2 + 0.036x + c$ f'(0) = 0 + 0 + c = 0 $\Rightarrow c = 0$

(b) (i) Find the value of f'(x), the derivative of f(x), when x = -4.

 $f(x) = 0 \cdot 0024x^{3} + 0 \cdot 018x^{2} + cx + d$ $f'(x) = 0 \cdot 0072x^{2} + 0 \cdot 036x$ $f'(-4) = 0 \cdot 0072 (-4)^{2} + 0 \cdot 036 (-4)$ $= -0 \cdot 0288$ (ii) Use your answer to part (b) (i) above to find the angle at which the plane is descending when it is 4 km from touchdown. Give your answer correct to the nearest degree.

 $\tan \theta = f'(x) = -0 \cdot 0288 \Rightarrow \theta = 178 \cdot 3503^{\circ}$ Angle of descent $\alpha = 1 \cdot 6497^{\circ} = 2^{\circ}$

(c) Show that (-2.5, 0.075) is the point of inflection of the curve y = f(x).

 $f'(x) = 0 \cdot 0072 x^{2} + 0 \cdot 036x$ $f''(x) = 0 \cdot 0144 \ x + 0 \cdot 036 = 0$ $\Rightarrow x = -2 \cdot 5$ $f(x) = 0 \cdot 0024x^{3} + 0 \cdot 018x^{2}$ $f(-2 \cdot 5) = 0 \cdot 0024 (-2 \cdot 5)^{3} + 0 \cdot 018 (-2 \cdot 5)^{2}$ $= -0 \cdot 0375 + 0 \cdot 1125 = 0 \cdot 075$ $(-2 \cdot 5, 0 \cdot 075)$

(d) (i) If (x, y) is a point on the curve y = f(x), verify that (-x-5, -y+0.15) is also a point on y = f(x).

$$f(x) = 0 \cdot 0024x^{3} + 0 \cdot 018x^{2}$$

$$f(-x-5) = 0 \cdot 0024(-x-5)^{3} + 0 \cdot 018(-x-5)^{2}$$

$$= 0 \cdot 0024(-x^{3} - 15x^{2} - 75x - 125) + 0 \cdot 018(x^{2} + 10x + 25)$$

$$= -0 \cdot 0024x^{3} - 0 \cdot 018x^{2} + 0x + 0 \cdot 15$$

$$= -y + 0 \cdot 15$$

(ii) Find the image of (-x-5, -y+0.15) under symmetry in the point of inflection.

Point: (-x-5, -y+0.15)Point of inflection: (-2.5, 0.075)Change in x value: (-2.5)-(-x-5)=x+2.5Change in y value: 0.075-(-y+0.15)=y-0.075Image of point of inflection: x value: -2.5+(x+2.5)=xy value: 0.075+(y-0.075)=y $\Rightarrow (x, y)$ is image

Let
$$(x, y)$$
 be the image.
 $\left(\frac{-x-5+x}{2}, \frac{-y+0.15+y}{2}\right) = (-2.5, 0.075)$, the point of inflection

Question 9 (2015)

(a) (i) Complete the table below to show the total volume of oil on the water after each of the first 6 minutes of the oil-spill.

Time (minutes)	1	2	3	4	5	6
Volume (10 6 cm 3)	4	8	12	16	20	24

(ii) Draw a graph to show the total volume of oil on the water over the first 6 minutes.

(iii) Write an equation for V(t), the volume of oil on the water, in cm³, after t minutes.

Line, slope 4×10^6 , passing through (0, 0). $V(t) = (4 \times 10^6) t$

- (b) The spilled oil forms a circular oil slick 1 millimetre thick.
 - (i) Write an equation for the volume of oil in the slick, in cm^3 , when the radius is r cm.

 $V = \pi r^2 h$ = $\pi r^2 (0.1)$ = $0.1\pi r^2$ cm³ (ii) Find the rate, in cm per minute, at which the radius of the oil slick is increasing when the radius is 50 m.

 $\frac{dV}{dt} = 4 \times 10^6 \text{ cm}^3 \text{ per minute}$ $V = \pi r^2 h \text{ where } h = 0.1 \text{ cm}$ $\frac{dV}{dr} = 2\pi r h$ $\frac{dV}{dr} = 0.2\pi r$ $\frac{dr}{dt} = \frac{dr}{dV}\frac{dV}{dt} = \frac{1}{0.2\pi r} \times 4 \times 10^6$ $= \frac{4 \times 10^6}{0.2\pi (5000)} = 1273.3 \text{ cm per minute}$

(c) Show that the area of water covered by the oil slick is increasing at a constant rate of 4×10^7 cm² per minute.

$$A = \pi r^{2} \Rightarrow \frac{dA}{dr} = 2\pi r$$
$$\frac{dA}{dt} = \frac{dA}{dr}\frac{dr}{dt} = 2\pi r \frac{4 \times 10^{6}}{0 \cdot 2\pi r} = 4 \times 10^{7} \text{ cm}^{2} \text{ per minute}$$

or

$$(0.1)\pi r^{2} = (4 \times 10^{6})t$$
$$\Rightarrow A = \pi r^{2} = (4 \times 10^{7})t$$
$$\frac{dA}{dt} = 4 \times 10^{7}$$

(d) The nearest land is 1 km from the point at which the oil-spill began. Find how long it will take for the oil slick to reach land. Give your answer correct to the nearest hour.

$$A = \pi r^{2} = \pi (10^{5})^{2} = \pi 10^{10} \text{ cm}^{2}$$
$$t = \frac{\pi 10^{10}}{4 \times 10^{7}} = \frac{\pi 10^{3}}{4} = 785 \cdot 398 \text{ minutes}$$
$$= 13 \cdot 09 = 13 \text{ hours}$$

(a) Find the length of the day in Galway on June 5th (76 days after March 21st). Give your answer in hours and minutes, correct to the nearest minute.

$$f(t) = 12 \cdot 25 + 4 \cdot 75 \sin\left(\frac{2\pi}{365}t\right)$$

$$f(76) = 12 \cdot 25 + 4 \cdot 75 \sin\left(\frac{2\pi}{365} \times 76\right)$$

$$= 12 \cdot 25 + 4 \cdot 587 = 16 \cdot 837 = 16 \text{ hours } 50 \text{ minutes}$$

(b) Find a date on which the length of the day in Galway is approximately 15 hours.

$$f(t) = 12 \cdot 25 + 4 \cdot 75 \sin\left(\frac{2\pi}{365}t\right) = 15$$
$$\Rightarrow \sin\left(\frac{2\pi}{365}t\right) = 0 \cdot 578947$$
$$\Rightarrow \frac{2\pi}{365}t = 0 \cdot 6174371$$
$$\Rightarrow t = 35 \cdot 87$$
$$36 \text{ days after March 21 is April 26.}$$

(c) Find f'(t), the derivative of f(t).

$$f(t) = 12 \cdot 25 + 4 \cdot 75 \sin\left(\frac{2\pi}{365}t\right)$$
$$f'(t) = 0 + 4 \cdot 75 \times \frac{2\pi}{365} \cos\left(\frac{2\pi}{365}t\right)$$
$$= \frac{9 \cdot 5\pi}{365} \cos\left(\frac{2\pi}{365}t\right)$$

(d) Hence, or otherwise, find the length of the longest day in Galway.

$$f(t)$$
 is a maximum when $\sin\left(\frac{2\pi}{365}t\right)$ is a maximum of 1.
 $t = 12 \cdot 25 + 4 \cdot 75 = 17$ hours

$$f'(t) = 0 \Rightarrow \frac{9 \cdot 5\pi}{365} \cos\left(\frac{2\pi}{365}t\right) = 0$$

$$\Rightarrow \cos\left(\frac{2\pi}{365}t\right) = 0$$

$$\Rightarrow \frac{2\pi}{365}t = \frac{\pi}{2}$$

$$\Rightarrow t = \frac{365}{4} = 91 \cdot 25$$

$$f(91 \cdot 25) = 12 \cdot 25 + 4 \cdot 75 \sin\left(\frac{2\pi}{365} \times 91 \cdot 25\right)$$

$$= 12 \cdot 25 + 4 \cdot 75 \sin\frac{\pi}{2}$$

$$= 17 \text{ hours}$$

(e) Use integration to find the average length of the day in Galway over the six months from March 21st to September 21st (184 days). Give your answer in hours and minutes, correct to the nearest minute.

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{184} \int_{0}^{184} \left(12 \cdot 25 + 4 \cdot 75 \sin\left(\frac{2\pi}{365}t\right) \right) dt$$
$$= \frac{1}{184} \left[12 \cdot 25t - 4 \cdot 75 \times \frac{365}{2\pi} \cos\left(\frac{2\pi}{365}t\right) \right]_{0}^{184}$$
$$= \frac{1}{184} \left[(2254 + 275 \cdot 843) - (0 - 275 \cdot 934) \right]$$
$$= \frac{1}{184} \left[2805 \cdot 777 \right]$$
$$= 15 \cdot 24879$$
$$= 15 \text{ hours 15 minutes}$$

(a) Show that -k is a root of f.

Substituting -k for x we obtain $f(-k) = (-k)^{3} + (1-k^{2})(-k) + k$ $= -k^{3} - k + k^{3} + k$ = 0Therefore -k is a root of f. MODEL ANSWER BY the mathematical control of f.

(b) Find, in terms of k, the other two roots of f.

Since -k is a root of f we know, by the Factor Theorem, that (x+k) is a factor of f(x). Now we carry out long division to find the other factor.

$$\begin{array}{r} x^2 - kx + 1 \\ x+k \overline{)x^3 + 0x^2 + (1-k^2)x + k} \\ \underline{x^3 + kx^2} \\ - kx^2 + (1-k^2)x \\ - \underline{kx^2 - k^2x} \\ x + k \\ \underline{x + k} \\ 0 \end{array}$$

So

$$x^{3} + (1 - k^{2})x + k = (x + k)(x^{2} - kx + 1).$$

Therefore the other two roots of f are solutions of the equation

 $x^2 - kx + 1 = 0.$

Using the quadratic formula we get

$$x = \frac{k \pm \sqrt{k^2 - 4}}{2}$$

So the other two roots of f are

$$\frac{k+\sqrt{k^2-4}}{2} \text{ and } \frac{k-\sqrt{k^2-4}}{2}.$$
MODEL ANSWER BY
themathstutor.ie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

(c) Find the set of values of k for which f has exactly one real root.

From the solution to part (b), we see that *f* has exactly one real root if and only if $k^2 - 4 < 0$. This is equivalent to $k^2 < 4$ or

First we calculate the derivative of f. So

$$f'(x) = 3x^2 - 5(2x) + 3(1) + 0 = 3x^2 - 10x + 3$$

Now we solve f'(x) = 0 to find the stationary points of f. Now

$$3x^2 - 10x + 3 = 0 \Leftrightarrow x = \frac{10 \pm \sqrt{10^2 - 36}}{2(3)} \Leftrightarrow x = \frac{10 \pm 8}{6}.$$

So the stationary points of f(x) are given by

$$x = 3 \text{ or } x = \frac{1}{3}.$$

Now both of these lie inside A. So the maximum/minimum value of f(x) occurs at one $x = 0, \frac{1}{3}, 3$ or 5. Now

$$f(0) = 5$$

$$f(\frac{1}{3}) = \frac{1}{27} - \frac{5}{9} + 1 + 5 = \frac{148}{27}$$

$$f(3) = 27 - 5(9) + 3(3) + 5 = -4$$

$$f(5) = 125 - 5(25) + 3(5) + 5 = 20$$

Therefore

The maximum value of f is 20

and

The minimum value of f is -4

(b) State whether f is injective. Give a reason for your answer.

f is NOT injective. Reason: We see from our solution to part (a) that $f(\frac{1}{3}) > 0 > f(3)$ - in particular the sign of f(x) changes between $x = \frac{1}{3}$ and x = 3. This means that there is some a < 3 such that f(a) = 0Similarly, since f(3) < 0 < f(5), there is some b > 3 such that f(b) = 0. So $a \neq b$ since a < 0 and b > 0, but f(a) = f(b) = 0. Therefore f is not injective. MODEL ANSWER BY the mathstutor.ie