FunctionsH

Question 1 (2017)

$$
\text { (a) } \begin{gathered}
r=\frac{42 \cdot 75}{95}=\frac{9}{20} \quad T_{n}=a r^{n-1}<0.01 \\
95\left(\frac{9}{20}\right)^{n-1}<0.01 \\
\left(\frac{9}{20}\right)^{n-1}<\frac{0.01}{95} \\
(n-1) \log \left(\frac{9}{20}\right)<\log \left(\frac{0.01}{95}\right) \\
(n-1)>\frac{\log \left(\frac{0.01}{95}\right)}{\log \left(\frac{9}{20}\right)} \\
\begin{array}{c}
n-1>11.47 \\
n>12.47
\end{array} \\
\begin{array}{c}
12^{\text {th }} \text { day }
\end{array}
\end{gathered}
$$

Scale 15D (0, 5, 8, 12, 15)

Low Partial Credit:

- r found
- T_{n} of a GP with some substitution

Mid Partial Credit:

- Inequality in n written

High Partial Credit:

- Inequality in n simplified (log handled)

Full Credit:

- Accept $n=12 \cdot 47$

Question 2 (2017)

(a)	$\begin{gathered} S e^{-1(0)} \times 10^{6}=1100000 \\ S=1 \cdot 1 \end{gathered}$	Scale 10B (0, 4, 10) Partial Credit - equation in S with substitution
(b)	$\begin{gathered} p(5)=1 \cdot 1 e^{0 \cdot 1(5)} \times 10^{6} \\ =1.813593 \times 10^{6} \\ =1813593 \end{gathered}$	Scale 10B (0, 4, 10) Partial Credit - substitution into formula for p (5)
(c)	$\begin{gathered} p(6)=1 \cdot 1 e^{0 \cdot 6} \times 10^{6} \\ p(5)=1 \cdot 1 e^{0.5} \times 10^{6} \\ p(6)-p(5)=\left(1 \cdot 1 e^{0 \cdot 6}-1 \cdot 1 e^{0.5}\right) \times 10^{6} \\ =0 \cdot 1907372 \times 10^{6} \\ =190737 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - substitution into formula for p (6) - use of $p(5)$ from previous part - $p(6)-p(5)$ written or implied High partial Credit - Formulates $p(6)-p(5)$ with some substitution

(d)	$\begin{gathered} q(t)=3.9 e^{k t} \times 10^{6} \\ 3709795=3.9 e^{k} \times 10^{6} \\ \frac{3.709795}{3.9}=e^{k} \\ \log _{e} \frac{3.709795}{3.9}=k \\ k=-0.0499=-0.05 \end{gathered}$	Scale 15C (0, 5, 10, 15) Low Partial Credit - Either substitution into formula for k - Verifies k value only. High Partial Credit - relevant equation in k
(e)	$\begin{gathered} p(t)=q(t) \\ 1 \cdot 1 e^{0 \cdot 1 t} \times 10^{6}=3 \cdot 9 e^{-0.05 t} \times 10^{6} \\ 1 \cdot 1 e^{0 \cdot 1 t}=3 \cdot 9 e^{-0.05 t} \\ \frac{e^{0.1 t}}{e^{-0.05 t}}=\frac{3 \cdot 9}{1 \cdot 1} \\ e^{0.15 t}=\frac{39}{11} \\ \ln \frac{39}{11}=0.15 t \end{gathered}$ $t=8.44$ years In 2018 both populations equal	Scale 5C (0, 3, 4, 5) Low Partial Credit - $p(t)=q(t)$ written or implied High Partial Credit - relevant equation in t
(f)	$\begin{gathered} \frac{1}{15} \int_{0}^{15} 3.9 e^{-0.05 t} \times 10^{6} d t \\ \frac{1}{15}\left[\frac{3.9}{-0.05} e^{-0.05(15)}-\frac{3.9}{-0.05} e^{-0.05(0)}\right] \\ \times 10^{6} \\ 2.743694 \times 10^{6} \\ 2743694 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - integral formulated (with limits) High Partial Credit: - integration with full substitution
(g)	$\begin{gathered} q(t)=3.9 e^{-0.05 t} \times 10^{6} \\ q^{\prime}(t)=-0.05\left(3 \cdot 9 e^{-0.05 t} \times 10^{6}\right) \\ q^{\prime}(8)=-0.05\left(3.9 e^{-0.05(8)} \times 10^{6}\right) \\ =-130712 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit - $q^{\prime}(t)$ High Partial Credit - $q^{\prime}(t)$ fully substituted

(b) (i)	$\begin{gathered} f(t)=a+b \cos c t \\ \text { Range: }[(a+b),(a-b)] \\ a+b=5.5 \quad a-b=1.7 \\ a=3.6 \quad b=1.9 \end{gathered}$	Scale $10 \mathrm{C}(0,5,8,10)$ Low Partial Credit: - one equation in a and b - Range in terms of a and b High Partial Credit: - a or b found Note: Accept correct answer without work
(b) (ii)	Time between two successive high tides is: $12 \frac{34}{60}$ hours $\begin{gathered} \text { period }=12 \frac{34}{60} \\ \text { period }=\frac{2 \pi}{c} \\ c=\frac{2 \pi}{12 \frac{34}{60}}=0.4999=0.5 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - Period identified or $\frac{2 \pi}{c}$ or $12 \cdot 34$ High Partial Credit: - equation in c with some substitution
(c)	$\begin{aligned} & 5 \cdot 2=a+b \cos c t \\ & 5 \cdot 2=3 \cdot 6+1 \cdot 9 \cos 0 \cdot 5 t \\ & 0 \cdot 5 t=\cos ^{-1} \frac{1 \cdot 6}{1 \cdot 9}=0.569621319 \\ & 0 \cdot 5 t=0 \cdot 5696 \\ & t=1 \cdot 139 \text { hours } \\ & \text { (before and after high tide at } 14: 34 \text {) } \\ & \text { Time }=1 \text { hour } 8 \text { minutes } \\ & \text { Times: }(14: 34) \pm 1 \text { hour } 8 \text { min } \\ & \Rightarrow 13: 26 \text { and } 15: 42 \end{aligned}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - equation with some substitution High Partial Credit: - solution for t Note: Low partial at most if formula not used

Question 4 (2016)

(b)
(ii)

$$
\begin{aligned}
f(x) & =3 x-2 \\
f^{-1}(x) & =\frac{x+2}{3}
\end{aligned}
$$

Scale 5B (0, 2, 5)
Partial Credit

- any relevant transpose

Q7	Model Solution - 40 Marks	Marking Notes
(a) (i)	$\begin{gathered} v=\frac{4}{3} \pi r^{3} \Rightarrow \frac{d v}{d r}=4 \pi r^{2} \\ \frac{d v}{d t}=250 \mathrm{~cm}^{3} / \mathrm{s} \\ \frac{d r}{d t}=\frac{d r}{d v} \cdot \frac{d v}{d t}=\frac{1}{4 \pi r^{2}} \cdot 250 \\ \frac{d r}{d t}=\frac{250}{4 \pi 400}=\frac{5}{32 \pi} \mathrm{~cm} / \mathrm{s} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - work towards $\frac{d v}{d r}$ or $\frac{d v}{d t}$ or $\frac{d r}{d t}$ High Partial Credit - correct expression for $\frac{d r}{d t}$
(ii)	$\begin{gathered} a=4 \pi r^{2} \Rightarrow \frac{d a}{d r}=8 \pi r \\ \frac{d a}{d t}=\frac{d a}{d r} \cdot \frac{d r}{d t}=8 \pi r \cdot \frac{5}{32 \pi} \\ =\frac{5(20)}{4} \\ =25 \mathrm{~cm}^{2} / \mathrm{s} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - work towards $\frac{d a}{d r}$ or $\frac{d a}{d t}$ High Partial Credit - correct expression for $\frac{d a}{d t}$
(b) (i)	$\begin{gathered} -x^{2}+10 x=0 \\ x(-x+10)=0 \\ x=0 \quad \text { or } \quad x=10 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - quadratic equation formed - gets $x=0$ only High Partial Credit - quadratic factorised Note: $f^{\prime}(x)=0 \Rightarrow 2 x-10=0 \Rightarrow x=5$ merits 0 marks
(ii)	$\begin{aligned} & \frac{1}{10-0} \int_{0}^{10}\left(-x^{2}+10 x\right) d x \\ & \quad=\frac{1}{10}\left[\frac{-x^{3}}{3}+5 x^{2}\right]_{0}^{10} \\ & =\frac{1}{10}\left[\left(\frac{-1000}{3}+500\right)-0\right] \\ & =\frac{-100}{3}+50=\frac{50}{3} \mathrm{~m} \end{aligned}$	Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit - integration set up High Partial Credit - correct integration with some substitution

Q8	Model Solution - 55 Marks	Marking Notes
(a) (i)	$\begin{gathered} f(x)=-0 \cdot 274 x^{2}+1 \cdot 193 x+3 \cdot 23 \\ f^{\prime}(x)=-0 \cdot 548 x+1 \cdot 193=0 \\ x=2 \cdot 177 \mathrm{~m} \end{gathered}$ $\begin{gathered} f(2 \cdot 177)=-0 \cdot 274(2 \cdot 177)^{2} \\ +1 \cdot 193(2 \cdot 177)+3 \cdot 23 \\ =-1 \cdot 2986+2 \cdot 5972+3 \cdot 23 \\ =4 \cdot 529 \mathrm{~m} \\ \text { or } \\ -0 \cdot 274\left(x^{2}-\frac{1193}{274} x-\frac{1615}{137}\right) \\ -0 \cdot 274\left(x-\frac{1193}{548}\right)^{2}+4.5285 \\ \text { Max Height }=4 \cdot 529 \mathrm{~m} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - any correct differentiation - effort made at completing square - trial and error with more than one value of x tested High Partial Credit - x value correct Note: if correct answer by trial and error, must show points on each side of max point to be lower to earn full credit
(ii)	$\begin{gathered} \tan \theta=-0 \cdot 548(4 \cdot 5)+1 \cdot 193 \\ \tan \theta=-1 \cdot 273 \\ \theta=51 \cdot 8^{\circ}=52^{\circ} \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - tan Note: right angled triangles may appear in diagram given in equation
(iii)	$\begin{gathered} \text { Map } A \rightarrow C \\ (-0 \cdot 5,2 \cdot 565) \rightarrow(0,2) \\ 2 \cdot 177-(-0 \cdot 5)=2 \cdot 677 \\ 4 \cdot 529-0 \cdot 565=3 \cdot 964 \\ (2 \cdot 177,4 \cdot 529) \rightarrow(2 \cdot 677,3 \cdot 964) \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - $(-0 \cdot 5,2 \cdot 565) \rightarrow(0,2)$

(iv)

$$
\begin{gathered}
g(x)=a x^{2}+b x+c \\
C(0,2) \in g(x)=>c=2
\end{gathered}
$$

$B(4 \cdot 5,3 \cdot 05) \in g(x)$
$3 \cdot 05=\mathrm{a}(4.5)^{2}+\mathrm{b}(4 \cdot 5)+2$
$\Rightarrow 20 \cdot 25 a+4 \cdot 5 b=1 \cdot 05$
$g^{\prime}(x)=2 a x+b=0$
$\Rightarrow 2 a(2 \cdot 677)+b=0$
$5 \cdot 354 a+b=0$

From (i) and (ii)
$a=-0.273$
$b=1.462$

$$
g(x)=-0 \cdot 273 x^{2}+1 \cdot 462 x+2
$$

[Note: a third equation that could be used is
$3 \cdot 964=a(2 \cdot 677)^{2}+b(2 \cdot 677)+2 \ldots$...iii)]

Or

Equation of parabola with vertex (h, k) :

$$
g(x)=a(x-h)^{2}+k
$$

$C(0,2)$ on curve: $(h, k)=(2 \cdot 677,3.964)$

$$
\begin{gathered}
2=a(-2 \cdot 677)^{2}+3.964 \\
-1 \cdot 964=a(7 \cdot 166329) \\
a=-0.27405=-0.274
\end{gathered}
$$

Parabola:

$$
\begin{gathered}
g(x)=-0.274\left[(x-2.677)^{2}\right]+3.964 \\
\text { or } \\
g(x)=f(x-0.5)-0.565 \\
g(x)=-0.274(x-0.5)^{2}+1.193(x-0.5) \\
\quad+3.23-0.565 \\
g(x)=-0.274 x^{2}+1.467 x+2
\end{gathered}
$$

Scale 10D ($0,2,5,8,10$)
Low Partial Credit

- c value found
- relevant equation in a, b and/or c

Mid Partial Credit

- formulated correctly any two equations

High Partial Credit

- formulated correctly any three equations

Note: $a x^{2}+b x+c$ not in an equation merits 0 marks

Or

Scale 10D (0, 2, 5, 8, 10)
Low Partial Credit

- equation of curve
- use of C

Mid Partial Credit

- using peak value

High Partial Credit

- value of a found

(b) (i)	$G_{5}=$ Female,Male,Female,Female,Male	Scale 5B (0, 2, 5) Partial Credit - one correct entry
(b) (ii)	$\begin{gathered} G_{6}=G_{5}+G_{4}=5+3=8 \\ G_{7}=G_{6}+G_{5}=8+5=13 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - $G_{6}=G_{5}+G_{4}$ - $G_{7}=G_{6}+G_{5}$ - G_{7} or G_{6} correct - 8 and/or 13 without work High Partial Credit - correct substitution in both
(b) (iii)	$\begin{aligned} G_{3} & =\frac{(1+\sqrt{5})^{3}-(1-\sqrt{5})^{3}}{2^{3} \sqrt{5}}=2 \\ (1+\sqrt{5})^{3} & =\left(1+3 \sqrt{5}+3 \sqrt{5}^{2}+\sqrt{5}^{3}\right) \\ & =16+8 \sqrt{5} \\ (1-\sqrt{5})^{3} & =\left(1-3 \sqrt{5}+3 \sqrt{5}^{2}-\sqrt{5}^{3}\right) \\ & =16-8 \sqrt{5} \\ G_{3} & =\frac{6 \sqrt{5}+2 \sqrt{5}^{3}}{8 \sqrt{5}^{2}} \\ & =\frac{6+2 \sqrt{5}^{2}}{8}=\frac{16}{8}=2 \quad \text { Q.E.D. } \end{aligned}$	Scale 5B (0, 2, 5) Partial Credit - some correct substitution - using approximate value for $\sqrt{5}$ - $G_{3}=2$ - some effort at cubing Note: use of $\sqrt{5}$ as approximation, even if rounded off to 2 at end of work merits at most Partial Credit

(a) (i) Show that $d=0$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x+d \\
& f(0)=0+0+0+d=0 \quad \Rightarrow \quad d=0
\end{aligned}
$$

(ii) Using the fact that P is the point $(-5,0 \cdot 15)$, or otherwise, show that $c=0$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x \\
& f(-5)=0 \cdot 0024(-5)^{3}+0 \cdot 018(-5)^{2}+c(-5)=0 \cdot 15 \\
& \Rightarrow 0 \cdot 15-5 c=0 \cdot 15 \quad \Rightarrow \quad c=0
\end{aligned}
$$

or

The plane lands horizontally at $O \Rightarrow f^{\prime}(x)=0$ when $x=0$
$f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x+c$
$f^{\prime}(0)=0+0+c=0$
$\Rightarrow c=0$
(b) (i) Find the value of $f^{\prime}(x)$, the derivative of $f(x)$, when $x=-4$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x+d \\
& \begin{array}{l}
f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x \\
f^{\prime}(-4)=0 \cdot 0072(-4)^{2}+0 \cdot 036(-4) \\
\quad=-0 \cdot 0288
\end{array}
\end{aligned}
$$

(ii) Use your answer to part (b) (i) above to find the angle at which the plane is descending when it is 4 km from touchdown. Give your answer correct to the nearest degree.

$$
\tan \theta=f^{\prime}(x)=-0 \cdot 0288 \Rightarrow \theta=178 \cdot 3503^{\circ}
$$

Angle of descent $\alpha=1.6497^{\circ}=2^{\circ}$
(c) Show that $(-2.5,0.075)$ is the point of inflection of the curve $y=f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x \\
& f^{\prime \prime}(x)=0 \cdot 0144 \quad x+0 \cdot 036=0 \\
& \Rightarrow \quad x=-2 \cdot 5 \\
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2} \\
& f(-2 \cdot 5)=0 \cdot 0024(-2 \cdot 5)^{3}+0 \cdot 018(-2 \cdot 5)^{2} \\
& \quad=-0 \cdot 0375+0 \cdot 1125=0 \cdot 075 \\
& (-2 \cdot 5,0 \cdot 075)
\end{aligned}
$$

(d) (i) If (x, y) is a point on the curve $y=f(x)$, verify that $(-x-5,-y+0 \cdot 15)$ is also a point on $y=f(x)$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2} \\
& f(-x-5)=0 \cdot 0024(-x-5)^{3}+0 \cdot 018(-x-5)^{2} \\
& =0 \cdot 0024\left(-x^{3}-15 x^{2}-75 x-125\right)+0 \cdot 018\left(x^{2}+10 x+25\right) \\
& =-0 \cdot 0024 x^{3}-0 \cdot 018 x^{2}+0 x+0 \cdot 15 \\
& =-y+0 \cdot 15
\end{aligned}
$$

(ii) Find the image of $(-x-5,-y+0 \cdot 15)$ under symmetry in the point of inflection.

Point: $(-x-5,-y+0 \cdot 15)$
Point of inflection: $(-2.5,0.075)$
Change in x value: $(-2 \cdot 5)-(-x-5)=x+2 \cdot 5$
Change in y value: $0 \cdot 075-(-y+0 \cdot 15)=y-0.075$
Image of point of inflection:

$$
\begin{aligned}
& x \text { value: }-2 \cdot 5+(x+2 \cdot 5)=x \\
& y \text { value: } 0 \cdot 075+(y-0 \cdot 075)=y \\
& \Rightarrow(x, y) \text { is image }
\end{aligned}
$$

Let (x, y) be the image.
$\left(\frac{-x-5+x}{2}, \frac{-y+0 \cdot 15+y}{2}\right)=(-2 \cdot 5,0 \cdot 075)$, the point of inflection
(a) (i) Complete the table below to show the total volume of oil on the water after each of the first 6 minutes of the oil-spill.

Time (minutes)	1	2	3	4	5	6
Volume $\left(10^{6} \mathrm{~cm}^{3}\right)$	4	8	12	16	20	24

(ii) Draw a graph to show the total volume of oil on the water over the first 6 minutes.

(iii) Write an equation for $V(t)$, the volume of oil on the water, in cm^{3}, after t minutes.

Line, slope 4×10^{6}, passing through $(0,0)$.
$V(t)=\left(4 \times 10^{6}\right) t$
(b) The spilled oil forms a circular oil slick 1 millimetre thick.
(i) Write an equation for the volume of oil in the slick, in cm^{3}, when the radius is $r \mathrm{~cm}$.

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi r^{2}(0 \cdot 1) \\
& =0 \cdot 1 \pi r^{2} \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Find the rate, in cm per minute, at which the radius of the oil slick is increasing when the radius is 50 m .

$$
\begin{aligned}
& \frac{d V}{d t}=4 \times 10^{6} \mathrm{~cm}^{3} \text { per minute } \\
& V=\pi r^{2} h \text { where } h=0 \cdot 1 \mathrm{~cm} \\
& \frac{d V}{d r}=2 \pi r h \\
& \frac{d V}{d r}=0 \cdot 2 \pi r \\
& \begin{aligned}
\frac{d r}{d t} & =\frac{d r}{d V} \frac{d V}{d t}
\end{aligned}=\frac{1}{0 \cdot 2 \pi r} \times 4 \times 10^{6} \\
& \\
& =\frac{4 \times 10^{6}}{0 \cdot 2 \pi(5000)}=1273 \cdot 3 \mathrm{~cm} \mathrm{per} \mathrm{minute}
\end{aligned}
$$

(c) Show that the area of water covered by the oil slick is increasing at a constant rate of $4 \times 10^{7} \mathrm{~cm}^{2}$ per minute.

$$
\begin{aligned}
& A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r \\
& \frac{d A}{d t}=\frac{d A}{d r} \frac{d r}{d t}=2 \pi r \frac{4 \times 10^{6}}{0 \cdot 2 \pi r}=4 \times 10^{7} \mathrm{~cm}^{2} \text { per minute }
\end{aligned}
$$

or

$$
\begin{aligned}
& (0 \cdot 1) \pi r^{2}=\left(4 \times 10^{6}\right) t \\
& \Rightarrow A=\pi r^{2}=\left(4 \times 10^{7}\right) t \\
& \frac{d A}{d t}=4 \times 10^{7}
\end{aligned}
$$

(d) The nearest land is 1 km from the point at which the oil-spill began. Find how long it will take for the oil slick to reach land. Give your answer correct to the nearest hour.

$$
\begin{aligned}
& A=\pi r^{2}=\pi\left(10^{5}\right)^{2}=\pi 10^{10} \mathrm{~cm}^{2} \\
& \begin{aligned}
t=\frac{\pi 10^{10}}{4 \times 10^{7}}=\frac{\pi 10^{3}}{4} & =785.398 \text { minutes } \\
& =13.09=13 \text { hours }
\end{aligned}
\end{aligned}
$$

(a) Find the length of the day in Galway on June $5^{\text {th }}$ (76 days after March $21^{\text {st }}$). Give your answer in hours and minutes, correct to the nearest minute.

$$
\begin{aligned}
& f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right) \\
& f(76)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} \times 76\right) \\
& =12 \cdot 25+4 \cdot 587=16 \cdot 837=16 \text { hours } 50 \text { minutes }
\end{aligned}
$$

(b) Find a date on which the length of the day in Galway is approximately 15 hours.

$$
\begin{aligned}
& f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)=15 \\
& \Rightarrow \sin \left(\frac{2 \pi}{365} t\right)=0 \cdot 578947 \\
& \Rightarrow \frac{2 \pi}{365} t=0 \cdot 6174371 \\
& \Rightarrow t=35 \cdot 87 \\
& 36 \text { days after March } 21 \text { is April } 26 .
\end{aligned}
$$

(c) Find $f^{\prime}(t)$, the derivative of $f(t)$.

$$
\begin{aligned}
f(t) & =12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right) \\
f^{\prime}(t) & =0+4 \cdot 75 \times \frac{2 \pi}{365} \cos \left(\frac{2 \pi}{365} t\right) \\
& =\frac{9 \cdot 5 \pi}{365} \cos \left(\frac{2 \pi}{365}\right) t
\end{aligned}
$$

(d) Hence, or otherwise, find the length of the longest day in Galway.
$f(t)$ is a maximum when $\sin \left(\frac{2 \pi}{365} t\right)$ is a maximum of 1.
$t=12 \cdot 25+4 \cdot 75=17$ hours
or

$$
\begin{aligned}
& f^{\prime}(t)=0 \Rightarrow \frac{9 \cdot 5 \pi}{365} \cos \left(\frac{2 \pi}{365} t\right)=0 \\
& \Rightarrow \cos \left(\frac{2 \pi}{365} t\right)=0 \\
& \Rightarrow \frac{2 \pi}{365} t=\frac{\pi}{2} \\
& \Rightarrow t=\frac{365}{4}=91 \cdot 25 \\
& \begin{aligned}
f(91 \cdot 25) & =12 \cdot 25+4.75 \sin \left(\frac{2 \pi}{365} \times 91.25\right) \\
& =12 \cdot 25+4.75 \sin \frac{\pi}{2} \\
& =17 \text { hours }
\end{aligned}
\end{aligned}
$$

(e) Use integration to find the average length of the day in Galway over the six months from March $21^{\text {st }}$ to September $21^{\text {st }}$ (184 days). Give your answer in hours and minutes, correct to the nearest minute.

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & =\frac{1}{184} \int_{0}^{184}\left(12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)\right) d t \\
& =\frac{1}{184}\left[12 \cdot 25 t-4 \cdot 75 \times \frac{365}{2 \pi} \cos \left(\frac{2 \pi}{365} t\right)\right]_{0}^{184} \\
& =\frac{1}{184}[(2254+275 \cdot 843)-(0-275 \cdot 934)] \\
& =\frac{1}{184}[2805 \cdot 777] \\
& =15 \cdot 24879 \\
& =15 \text { hours } 15 \text { minutes }
\end{aligned}
$$

(a) Show that $-k$ is a root of f.

Substituting $-k$ for x we obtain

$$
\begin{aligned}
f(-k) & =(-k)^{3}+\left(1-k^{2}\right)(-k)+k \\
& =-k^{3}-k+k^{3}+k \\
& =0
\end{aligned}
$$

Therefore $-k$ is a root of f.
(b) Find, in terms of k, the other two roots of f.

Since $-k$ is a root of f we know, by the Factor Theorem, that $(x+k)$ is a factor of $f(x)$. Now we carry out long division to find the other factor.

$$
\begin{aligned}
& x+k) \frac{x^{2}-k x+1}{x^{3}+0 x^{2}+\left(1-k^{2}\right) x+k} \\
& \frac{x^{3}+k x^{2}}{-k x^{2}}+\left(1-k^{2}\right) x \\
& -k x^{2}-k^{2} x \\
& +k \\
& \begin{array}{r}
x+k \\
0
\end{array}
\end{aligned}
$$

So

$$
x^{3}+\left(1-k^{2}\right) x+k=(x+k)\left(x^{2}-k x+1\right) .
$$

Therefore the other two roots of f are solutions of the equation

$$
x^{2}-k x+1=0
$$

Using the quadratic formula we get

$$
x=\frac{k \pm \sqrt{k^{2}-4}}{2} .
$$

So the other two roots of f are

$$
\frac{k+\sqrt{k^{2}-4}}{2} \text { and } \frac{k-\sqrt{k^{2}-4}}{2} .
$$

themathstutor.ie
 ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

(c) Find the set of values of k for which f has exactly one real root.

From the solution to part (b), we see that f has exactly one real root if and only if $k^{2}-4<0$. This is equivalent to $k^{2}<4$ or

$$
-2<k<2
$$

themathstutor.ie
 ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

First we calculate the derivative of f. So

$$
f^{\prime}(x)=3 x^{2}-5(2 x)+3(1)+0=3 x^{2}-10 x+3
$$

Now we solve $f^{\prime}(x)=0$ to find the stationary points of f. Now

$$
3 x^{2}-10 x+3=0 \Leftrightarrow x=\frac{10 \pm \sqrt{10^{2}-36}}{2(3)} \Leftrightarrow x=\frac{10 \pm 8}{6} .
$$

So the stationary points of $f(x)$ are given by

$$
x=3 \text { or } x=\frac{1}{3} \text {. }
$$

Now both of these lie inside A. So the maximum/minimum value of $f(x)$ occurs at one $x=0, \frac{1}{3}, 3$ or 5 . Now

$$
\begin{aligned}
f(0) & =5 \\
f\left(\frac{1}{3}\right) & =\frac{1}{27}-\frac{5}{9}+1+5=\frac{148}{27} \\
f(3) & =27-5(9)+3(3)+5=-4 \\
f(5) & =125-5(25)+3(5)+5=20
\end{aligned}
$$

Therefore
The maximum value of f is 20
and

$$
\text { The minimum value of } f \text { is }-4
$$

themathstutor.ie
 ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

(b) State whether f is injective. Give a reason for your answer.

f is NOT injective.

Reason: We see from our solution to part (a) that $f\left(\frac{1}{3}\right)>0>f(3)$ - in particular the sign of $f(x)$ changes between $x=\frac{1}{3}$ and $x=3$. This means that there is some $a<3$ such that $f(a)=0$
Similarly, since $f(3)<0<f(5)$, there is some $b>3$ such that $f(b)=0$.
So $a \neq b$ since $a<0$ and $b>0$, but $f(a)=f(b)=0$. Therefore f is not injective.

