MarkingScheme

FinancialMathsH

studying is easier on studyclix.ie

Question 1 (2017)

(a)	$P = \frac{\left(\frac{A}{1}\right)^2}{= \frac{A}{1}}$	$\frac{A}{1+i)^2} + \dots + \frac{A}{1+i}\left(1 - \left(\frac{1}{1+i}\right)^2 + \frac{A}{1-\frac{1}{1+i}}\right) + \frac{A}{1-\frac{1}{1+i}} + \frac{A}{1-\frac{1}{1+i}} + \frac{A}{1-\frac{1}{1+i}} + \frac{A}{1+i-1} + \frac{A}{1$		Low Pa • $P =$ • $A =$ • S_n f High Pa • full	C (0, 3, 4, 5) <i>artial Credit:</i> $\frac{A}{1+i}$ P(1 + i) formula with some <i>artial Credit:</i> substitution for <i>P</i> (formula.	
(b) (i)	$2.5\% \times 5000 = 125$		Scale 10B (0, 4, 10) Partial Credit • Any one unknown			
(b) (ii)	$(1+i)^{\frac{1}{12}} = (1.2175)^{\frac{1}{12}} = 1.016535$ Rate = 1.65%			Scale 10B (0, 4, 10) <i>Partial Credit</i> • Formula with some substitution		
(b)						
(iii)	Payment number	Fixed monthly payment, $\in A$	Inter		A Previous balance reduced by (€)	New balance of debt (€)
	0					5000
	1	125	82·50		42·50	4957·50
	2	125	81·80		43·20	4914·30
	3	125	81·09		43·91	4870.39
(b) (iii)				Low Pa • One High Pa • 6 co Note: 1	OC (0, 5, 8, 10) Intial Credit: Correct additional Intial Credit: Intrect additional en Where interest rate , then check the va	itries e in b(ii) is not

$$A = p \left[\frac{i(1+i)^{t}}{(1+i)^{t}-1} \right]$$

$$A[(1+i)^{t}-1] = pi(1+i)^{t}$$

$$A(1+i)^{t}-A = pi(1+i)^{t}$$

$$A = (1+i)^{t}[A-pi]$$

$$\frac{A}{A-pi} = (1+i)^{t}$$

$$\frac{125}{125-5000 \left(\frac{1\cdot65}{100}\right)} = \left(1+\frac{1\cdot65}{100}\right)^{t}$$

$$\frac{125}{42\cdot5} = (1\cdot0165)^{t}$$

$$\log\left(\frac{125}{42\cdot5}\right) = t \log(1\cdot0165)$$

$$t = \frac{\log\left(\frac{125}{42\cdot5}\right)}{\log(1\cdot0165)}$$

$$t = 65\cdot920$$

$$t = 66 \text{ months}$$

OR

$$A = p \left[\frac{i(1+i)^{t}}{(1+i)^{t}-1} \right]$$

$$125 = \frac{5000(0 \cdot 0165)(1 \cdot 0165)^{t}}{(1 \cdot 0165)^{t}-1}$$

$$125 = \frac{82 \cdot 5(1 \cdot 0165)^{t}}{(1 \cdot 0165)^{t}-1}$$

$$\frac{125}{82 \cdot 5} = \frac{1 \cdot 0165^{t}}{1 \cdot 0165^{t}-1}$$

$$\frac{50}{33} = \frac{1 \cdot 0165^{t}}{1 \cdot 0165^{t}-1}$$

$$50(1 \cdot 0165^{t}-1) = 33(1 \cdot 0165^{t})$$

$$50(1 \cdot 0165^{t}) - 50 = 33(1 \cdot 0165^{t})$$

$$50(1 \cdot 0165^{t}) - 33(1 \cdot 0165^{t}) = 50$$

$$1 \cdot 0165^{t}(50 - 33) = 50$$

$$1 \cdot 0165^{t}(17) = 50$$

$$1 \cdot 0165^{t} = \frac{50}{17}$$

$$t \log 1 \cdot 0165 = \log \frac{50}{17}$$

$$t = \frac{\log \left(\frac{50}{17}\right)}{\log 1 \cdot 0165} = 65 \cdot 92$$

$$t = 66 \text{ months}$$

Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Formula with some substitution
- Some relevant manipulation of formula.

High Partial Credit:

• Equation in t (t no longer an index)

(v)	$A = \frac{pi(1+i)^{t}}{(1+i)^{t}-1}$ $= \frac{5000 \left(1 \cdot 085^{\frac{1}{52}} - 1\right) (1 \cdot 085)^{3}}{(1 \cdot 085)^{3} - 1}$ $= €36 \cdot 16$ OR Weekly interest rate $(1+i)^{52} = 1 \cdot 085$ $1+i = 1 \cdot 085^{\frac{1}{52}}$ $1+i = 1 \cdot 00157$ $i = 0 \cdot 00157$ $A = \frac{pi(1+i)^{t}}{(1+i)^{t}-1}$ $A = \frac{5000(0 \cdot 00157)(1 \cdot 00157)^{156}}{(1 \cdot 00157)^{156}-1}$ $= €36 \cdot 16$	Scale 10C (0, 5, 8, 10) Low Partial Credit: • r (weekly) found High Partial Credit: • Fully substituted equation
(vi)	125 × 66 – (36·16)(156) =€2609·04	 Scale 5B (0, 3, 5) Partial Credit: Total repayment by either method found

6	Model Solu	tion – 2	5 Marks		Marking Notes
	P((M, 3, 3)	$=\frac{1}{26}\times\frac{1}{10}\times\frac{1}{10}$	$\frac{1}{10} = \frac{1}{2600}$	 Scale 10C (0, 3, 7, 10) Low Partial Credit any correct relevant probability High Partial credit correct probabilities but not expressed a single fraction or equivalent Note: Accept correct answer without supporting work
)	Event	Payout	: Prob (P(x))	<i>x</i> .P(<i>x</i>)	
	Win	1000	$\frac{1}{2600}$	$\frac{1000}{2600}$	Scale 10C (0, 3, 7, 10) Low Partial Credit • 1 correct entry to table
	letter 1 No.	50	$\frac{9}{2600}$	$\frac{450}{2600}$	 High Partial Credit all entries correct but fails to finish or
	letter 2 nd No	50	$\frac{9}{2600}$	$\frac{450}{2600}$	finishes incorrectlyno conclusion
	letter only	50	$\frac{81}{2600}$	$\frac{4050}{2600}$	
	Fail to win	0		0	
	$\sum x. P(x) = \frac{5950}{2600} = 2.29$ Club loses 29 cent per play Or				
	Event	Pay out	Prob (P(x)	<i>x</i> .P(<i>x</i>)	
	Win	-998	¹ / ₂₆₀₀	⁻⁹⁹⁸ / ₂₆₀₀	
	letter + 1 st No.	-48	⁹ / ₂₆₀₀	-432/ ₂₆₀₀	
	Letter + 2 nd No	-48	⁹ / ₂₆₀₀	-432/2600	
	letter only	-48	⁸¹ / ₂₆₀₀	-3888/2600	
	Fail to Win	+2	²⁵⁰⁰ / ₂₆₀₀	⁵⁰⁰⁰ / ₂₆₀₀	
	2	$\sum x \cdot P(x)$	$) = -\frac{750}{2600} = -$	-29 cent	

(c)
Profit = Revenue – Pay-out

$$600 = 845(x - 2 \cdot 29)$$

 $x = \frac{600 + 845(2 \cdot 29)}{845}$
 $x = 3$
or
 $\frac{600}{845} = 0.71$
 $0.71 + 2.29 = 3$
Scale 5C (0, 2, 4, 5)
Low Partial Credit
• links profit, revenue and payout
High partial Credit
• formula fully substituted

Q9	Model Solution – 50 Marks	Marking Notes
(a) (i)	$\mu = 39400, \ \sigma = 12920$ $z = \frac{x - \mu}{\sigma} = \frac{60000 - 39400}{12920}$ $z = 1.59$ $P(z > 1.59) = 1 - P(z < 1.59)$ $= 1 - 0.9441 = 0.0559$ $= 5.59\%$ $= 5.6\%$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit • μ and σ identified Mid Partial Credit • $z = 1.59$ High Partial Credit • identifies 0.9441
(a)		
(ii)	$P(z \le z_1) = 0.9$ $z_1 = 1.28$ $\Rightarrow z_2 = -1.28$ $\Rightarrow \frac{x - 39400}{12920} = -1.28$ x = 22862.40 = €22.862	 Scale 5C (0, 2, 4, 5) Low Partial Credit identifies 1.28 but fails to progress High Partial Credit formula for x fully substituted
(a)	20400 12020	
(iii)	$\mu = 39400, \ \sigma = 12920, \bar{x} = 38280, \ n = 1000$	 Scale 15D (0, 4, 7, 11,15) Low Partial Credit z formulated with some substitution
	$H_0 \Rightarrow \mu = 39400$ $H_1 \Rightarrow \mu \neq 39400$	 states null and/or alternative hypothesis only reference to 1.96
	$z = \frac{38280 - 39400}{\frac{12920}{\sqrt{1000}}} = -2.74$	Mid Partial Credit z fully substituted
	-2.74 < -1.96	 High Partial Credit z = -2.74 and stops fails to state the null and alternative
	Result is significant. There is evidence to reject the null hypothesis	hypothesis correctlyfails to contextualise the answer
	The mean income has changed.	

or

Confidence Interval:

 $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ $39400 \pm 1.96 \frac{12920}{\sqrt{1000}}$ [38599.2, 40200.8]

38280 outside range

Result is significant. There is evidence to reject the null hypothesis

The mean income has changed.

or

Confidence Interval:

$$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

$$38280 \pm 1.96 \frac{12920}{\sqrt{1000}}$$

$$38280 \pm 1.96(408.57)$$

$$[37479.2, 39080.8]$$

39400 outside range

Result is significant. There is evidence to reject the null hypothesis The mean income has changed.

(b)		
	$26974 - 1.96 \left(\frac{5120}{\sqrt{400}}\right) \le \mu$ $\le 26974 + 1.96 \left(\frac{5120}{\sqrt{400}}\right)$	 Scale 10C (0, 3, 7, 10) Low Partial Credit interval formulated with some correct substitution
	$26472.24 \le \mu \le 27475.76$	High Partial Creditinterval formulated with fully correct substitution
(c)	The distribution of sample means will be normally distributed	Scale 5B (0, 2, 5) <i>Partial Credit</i> • mentions 30 (or more) but not contextualised
(d)	$\frac{1}{\sqrt{n}} = 0.045$ $\frac{1}{0.045} = \sqrt{n}$ $n = \left(\frac{1}{0.045}\right)^2 = 493.827$	Scale 5C (0, 2, 4, 5) Low Partial Credit • $\frac{1}{\sqrt{n}}$ High Partial Credit • n formulated with fully correct substitution
		Note: Accept 493 farmers or 494 farmers

Question 4 (2015)

- (a) Donagh is arranging a loan and is examining two different repayment options.
 - (i) Bank A will charge him a monthly interest rate of 0.35%. Find, correct to three significant figures, the annual percentage rate (APR) that is equivalent to a monthly interest rate of 0.35%.

$$F = P(1+i)^{t} = 1(1+0.0035)^{12} = 1.042818$$

$$\Rightarrow i = 4.28\%$$

(ii) Bank B will charge him a rate that is equivalent to an APR of 4.5%. Find, correct to three significant figures, the monthly interest rate that is equivalent to an APR of 4.5%.

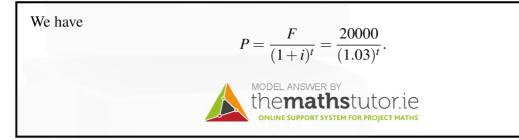
 $F = P(1+i)^{t}$ $1 \cdot 045 = 1(1+i)^{12}$ $1+i = \sqrt[12]{1 \cdot 045} = 1 \cdot 0036748$ $\Rightarrow i = 0 \cdot 367\%$ (b) Donagh borrowed €80 000 at a monthly interest rate of 0.35%, fixed for the term of the loan, from Bank A. The loan is to be repaid in equal monthly repayments over ten years. The first repayment is due one month after the loan is issued. Calculate, correct to the nearest euro, the amount of each monthly repayment.

$$A = P\left[\frac{i(1+i)^{t}}{(1+i)^{t}-1}\right]$$

= 80000 $\left[\frac{0 \cdot 0035(1 \cdot 0035)^{120}}{(1 \cdot 0035)^{120}-1}\right]$
= 80000 $\left[\frac{0 \cdot 00532296}{0 \cdot 520846}\right]$
= 817 \cdot 59 = \epsilon 818

or

$$80000 = \frac{A}{1\cdot0035} + \frac{A}{1\cdot0035^{2}} + \dots + \frac{A}{1\cdot0035^{120}}$$
$$= A \left[\frac{1}{1\cdot0035} + \frac{1}{1\cdot0035^{2}} + \dots + \frac{1}{1\cdot0035^{120}} \right]$$
$$= A \left[\frac{\frac{1}{1\cdot0035} \left(1 - \left(\frac{1}{1\cdot0035}\right)^{120} \right)}{1 - \frac{1}{1\cdot0035}} \right]$$
$$= A \left[\frac{0\cdot342471198}{0.0035} \right]$$
$$= A \left[97\cdot8489137 \right]$$
$$A = 817\cdot58 = €818$$


We have

$$P = \frac{F}{1+i} = \frac{20000}{1.03} = 19417.48$$

So the present value is \in 19417.48 to the nearest cent.

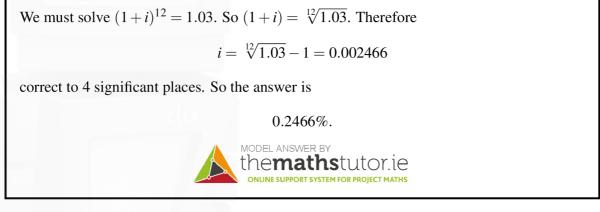
(b) Write down, in terms of t, the present value of a future payment of $\in 20,000$ in t years' time.

(c) Pádraig wants to have a fund that could, from the date of his retirement, give him a payment of $\in 20,000$ at the start of each year for 25 years. Show how to use the sum of a geometric series to calculate the value, on the date of retirement, of the final fund required.

Using the solution to part (b), we see that the amount required on the date of requirement is given by

$$A = 20000 + \frac{20000}{1.03} + \dots + \frac{20000}{(1.03)^{24}}$$

Using the notation of the formula on page 22 of the Formula and Tables book, we have a geometric series with a = 20000, $r = \frac{1}{1.03}$ and n = 25. Therefore


$$A = \frac{20000\left(1 - \left(\frac{1}{1.03}\right)^{25}\right)}{1 - \frac{1}{1.03}}$$

Using a calculator we obtain

to the nearest euro.

- (d) Pádraig plans to invest a fixed amount of money every month in order to generate the fund calculated in part (c). His retirement is $40 \times 12 = 480$ months away.
 - (i) Find, correct to four significant places, the rate of interest per month that would, if paid and compounded annually, be equivalent to an effective annual rate of 3%.

(ii) Write dowm, in terms of n and P, the value on the retirement date of a payment of $\in P$ made n months before the retirement date.

Using the formula on page 30 of the Formula and Tables booklet we obtain $P(1.002466)^n$. MODEL ANSWER BY themathstutor.ie ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

(iii) If Pádraig makes 480 equal payments of $\in P$ from now until his retirement, what value of *P* will give him the fund he requires?

We must solve

$$P(1.002466)^{480} + P(1.002466)^{479} + \dots + P(1.002466) = 358711$$

or

$$P(1.002466 + (1.002466)^2 + \dots + (1.002466)^{480}) = 358711$$

Using the formula for the sum of a geometric series, we obtain

$$P\left(\frac{1.002466(1-(1.002466)^{480})}{1-1.002466}\right) = 358711$$

or

P(919.38) = 358711.

Therefore $P = \frac{358711}{919.38} = \bigcirc 390.17$ to the nearest cent.

(e) If Pádraig waits for ten years before starting his pension fund, how much will he then have to pay each month in order to generate the same pension fund?

Now the number of months until his retirement date is $30 \times 12 = 360$. So as above we must solve

$$P(1.002466)^{360} + P(1.002466)^{359} + \dots + P(1.002466) = 358711$$

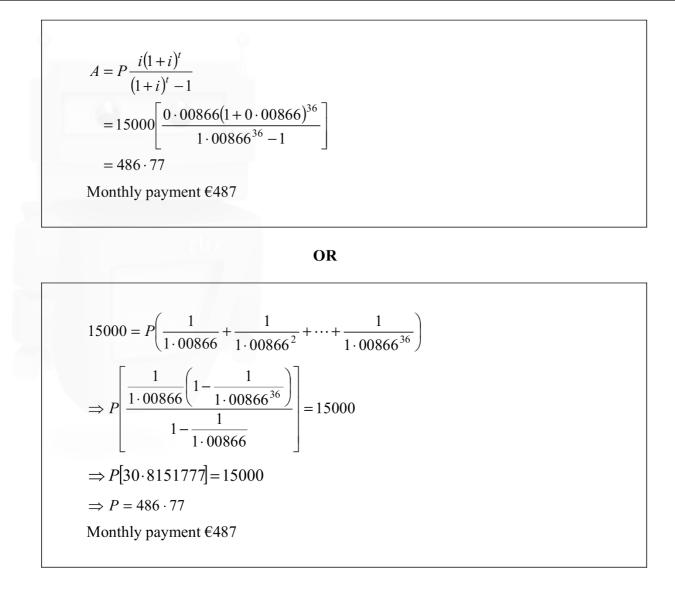
or

$$P(1.002466 + (1.002466)^2 + \dots + (1.002466)^{360}) = 358711$$

Using the formula for the sum of a geometric series, we obtain

$$P\left(\frac{1.002466(1-(1.002466)^{360})}{1-1.002466}\right) = 358711$$

or


P(580.11) = 358711.

Therefore, in this case, $P = \frac{358711}{580.11} = \bigcirc 618.35$ to the nearest cent.

$$(1+i)^{12} = 1.04 \Rightarrow 1+i = \sqrt[12]{1.04} = 1.003273 \Rightarrow i = 0.003274$$

Hence, $i = 0.327\%$
OR
$$(1.00327)^{12} = 1.039953481$$
$$= 1.0400$$
$$r = 4\%$$

$$15000 = P(1 \cdot 00327^{36} + 1 \cdot 00327^{35} + \dots + 1 \cdot 00327^{2} + 1 \cdot 00327)$$

$$\Rightarrow P\left[\frac{1 \cdot 00327(1 \cdot 00327^{36} - 1)}{1 \cdot 00327 - 1}\right] = 15000$$

$$\Rightarrow P[38 \cdot 26326387] = 15000$$

$$\Rightarrow P = 392 \cdot 02 = €392$$

Question 8 (2012)