## DifferentiationH

| (a) | $\begin{gathered} f(x+h)=\frac{1}{3}(x+h)^{2}-(x+h)+3 \\ f(x)=\frac{1}{3} x^{2}-x+3 \\ f(x+h)-f(x)=\frac{2 x h}{3}+\frac{h^{2}}{3}-h \\ \frac{f(x+h)-f(x)}{h}=\frac{2 x}{3}+\frac{h}{3}-1 \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{2 x}{3}-1 \end{gathered}$ | Scale 20D (0, 5, 14, 17, 20) <br> Low Partial Credit <br> - any $f(x+h)$ <br> Mid Partial Credit <br> - $f(x+h)-f(x)$ with some correct work <br> High Partial Credit <br> - $\frac{\frac{1}{3}(x+h)^{2}-(x+h)+3-\left(\frac{x^{2}}{3}-x+3\right)}{h}$ simplified <br> Notes: <br> - omission of limit sign penalised once only <br> - answer not from $1^{\text {st }}$ Principles merits 0 marks |
| :---: | :---: | :---: |
| ) | $\begin{aligned} & \frac{d(f g(x))}{d x}= \\ & \frac{1}{\left(3(x+5)^{2}+2\right)}(6(x+5)) \\ & \frac{d\left(f g\left(\frac{1}{4}\right)\right)}{d x}=\frac{6\left(\frac{21}{4}\right)}{3\left(\frac{21}{4}\right)^{2}+2}=\frac{504}{1355} \\ & =0.372 \end{aligned}$ <br> OR $\begin{gathered} f(x)=\ln \left(3 x^{2}+2\right) \\ g(x)=(x+5) \\ f[g(x)]=\ln \left[3(x+5)^{2}+2\right] \\ =\ln \left(3 x^{2}+30 x+77\right) \\ f^{\prime}(x)=\frac{6 x+30}{3 x^{2}+30 x+77} \\ x=\frac{1}{4}: \quad f^{\prime}(x)=\frac{31 \cdot 5}{84 \cdot 6875}=0.3719 \\ =0.372 \end{gathered}$ | Scale 5C (0, 3, 4, 5) <br> Low Partial Credit: <br> - Any correct differentiation <br> - $f g(x)$ formulated <br> High Partial Credit: <br> - $\frac{d(f g(x)}{d x}$ found <br> Note: <br> Work with $f(x) \times g(x)$ merits low partial credit at most |


| (a) | $\begin{gathered} r=\frac{42 \cdot 75}{95}=\frac{9}{20} \quad T_{n}=a r^{n-1}<0.01 \\ 95\left(\frac{9}{20}\right)^{n-1}<0.01 \\ \left(\frac{9}{20}\right)^{n-1}<\frac{0.01}{95} \\ (n-1) \log \left(\frac{9}{20}\right)<\log \left(\frac{0.01}{95}\right) \\ (n-1)>\frac{\log \left(\frac{0.01}{95}\right)}{\log \left(\frac{9}{20}\right)} \end{gathered}$ <br> (since $\log \left(\frac{9}{20}\right)$ is negative) $\begin{gathered} n-1>11.47 \\ n>12.47 \end{gathered}$ <br> $12^{\text {th }}$ day | Scale 15D (0, 5, 8, 12, 15) <br> Low Partial Credit: <br> - $r$ found <br> - $T_{n}$ of a GP with some substitution <br> Mid Partial Credit: <br> - Inequality in $n$ written <br> High Partial Credit: <br> - Inequality in $n$ simplified (log handled) <br> Full Credit: <br> - Accept $n=12 \cdot 47$ |
| :---: | :---: | :---: |
| (b) | $\begin{gathered} 4(2)+4 \sqrt{2}+4+\cdots \cdots \cdots \\ a=8 \quad r=\frac{1}{\sqrt{2}} \\ S_{\infty}=\frac{a}{1-r} \\ S_{\infty}=\frac{8}{1-\frac{1}{\sqrt{2}}} \\ S_{\infty}=\frac{8}{1-\frac{1}{\sqrt{2}} \cdot \frac{1+\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}} \\ S_{\infty}=\frac{8\left(1+\frac{1}{\sqrt{2}}\right)}{\frac{1}{2}} \\ S_{\infty}=16+8 \sqrt{2} \end{gathered}$ | Scale $10 \mathrm{C}(0,5,8,10)$ <br> Low Partial Credit: <br> - length of one side of new square <br> High Partial Credit: <br> - $S_{\infty}$ fully substituted <br> - Correct work with one side only |


| (a) | $\begin{gathered} f(x)=2 x^{3}+5 x^{2}-4 x-3 \\ f(-3)=2(-3)^{3}+5(-3)^{2}-4(-3) \\ -3 \\ =-54+45+12-3 \\ f(-3)=0 \\ \Rightarrow(x+3) \text { is a factor } \\ 2 x^{2}-x-1 \\ x + 3 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 4 x - 3 } \\ \underline{2 x^{3}+6 x^{2}} \\ -x^{2}-4 x \\ \frac{-x^{2}-3 x}{-x-3} \\ \frac{-x-3}{2} \\ f(x)=(x+3)\left(2 x^{2}-x-1\right) \\ f(x)=(x+3)(2 x+1)(x-1) \\ x=-3 \quad x=-\frac{1}{2} \quad x=1 \end{gathered}$ | Scale 15C (0, 5, 10, 15) <br> Low Partial Credit: <br> - Shows $f(-3)=0$ <br> High Partial Credit: <br> - quadratic factor of $f(x)$ found <br> Note: <br> No remainder in division may be stated as reason for $x=-3$ as root |
| :---: | :---: | :---: |
| (b) | $\begin{gathered} y=2 x^{3}+5 x^{2}-4 x-3 \\ \frac{d y}{d x}=6 x^{2}+10 x-4=0 \\ 3 x^{2}+5 x-2=0 \\ (x+2)(3 x-1)=0 \\ 3 x-1=0 \quad x+2=0 \\ x=\frac{1}{3} \quad x=-2 \\ f\left(\frac{1}{3}\right)=\frac{-100}{27} \quad f(-2)=9 \\ \operatorname{Max}=(-2,9) \quad \text { Min }=\left(\frac{1}{3}, \frac{-100}{27}\right) \end{gathered}$ | Scale 5C (0, 3, 4, 5) <br> Low Partial Credit: <br> - $\frac{d y}{d x}$ found (Some correct differentiation) <br> High Partial Credit <br> - roots and one $y$ value found <br> Note: <br> One of Max/Min must be identified for full credit |
| (c) | $a>\frac{100}{27}$ or $a<-9$ | Scale 5B (0, 3, 5) <br> Partial Credit: <br> - one value identified <br> - no range identified (from 2 values) |


| Q8 Mod | Model Solution - 45 Marks |  |  |  |  | Marking Notes |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | $\begin{aligned} & \text { Period }=\frac{2 \pi}{\frac{\pi}{6}}=12 \text { hours } \\ & \text { Range }= \\ & \quad[1 \cdot 6-1 \cdot 5,1 \cdot 6+1 \cdot 5]=[0 \cdot 1 \mathrm{~m}, 3 \cdot 1 \mathrm{n} \end{aligned}$ |  |  |  | Scale 5C ( $0,2,4,5$ ) <br> Low Partial Credit <br> - some use of $2 \pi$ or $\frac{\pi}{6}$ <br> - range of cos function <br> High partial credit <br> - period or range correct <br> Note: Accept correct period and/or range without work |  |  |  |  |
| (b) $\begin{aligned} & \\ & \\ & \\ & \\ & \text { or } \\ & \\ & 3.1\end{aligned}$ | $\operatorname{Max}=1 \cdot 6+1 \cdot 5(1)=3 \cdot 1 \mathrm{~m} .$ <br> or <br> $3 \cdot 1 \mathrm{~m}$ from range |  |  |  | Scale 5B ( $0,2,5$ ) <br> Partial Credit <br> - max occurs when $\cos A=1$ or $t=0$ <br> - effort at $h^{\prime}(t)$ <br> Note: Accept correct answer without work |  |  |  |  |
| (c) | $\begin{aligned} & h^{\prime}(t)=1 \cdot 5\left(-\sin \frac{\pi t}{6}\right) \frac{\pi}{6} \\ & h^{\prime}(2)=1.5\left(-\sin \frac{2 \pi}{6}\right) \frac{\pi}{6} \\ &=-0.68017=-0.68 \mathrm{~m} / \mathrm{h} \end{aligned}$ <br> Tide is going out at a rate of 0.68 m per hour at 2 am |  |  |  |  | Scale 5C (0, 2, 4, 5) <br> Low Partial Credit <br> - effort at differentiation <br> High Partial Credit <br> - correct numerical answer but not in context |  |  |  |
| (d)(i) |  |  |  |  |  |  |  |  |  |
| $h(t)=1 \cdot 6+1 \cdot 5 \cos \left(\frac{\pi}{6} t\right)$ |  |  |  |  |  |  |  |  |  |
| Time | 12 am | 3 am | 6 am | 9 am | 12 pm | 3 pm | 6 pm | 9 pm | 12 am |
| $t$ | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| Height | $3 \cdot 1$ | $1 \cdot 6$ | $\cdot 1$ | $1 \cdot 6$ | $3 \cdot 1$ | $1 \cdot 6$ | $\cdot 1$ | $1 \cdot 6$ | $3 \cdot 1$ |

(d)
(i)

Scale 10C (0, 3, 7, 10)
Low Partial Credit

- one correct height

High Partial Credit

- five correct heights


| (e) | Low tide $=0.1 \mathrm{~m}$ <br> High tide $=3.1 \mathrm{~m}$ <br> Difference $=3 \cdot 1-0 \cdot 1=3 \mathrm{~m}$ | Scale 5B (0, 2, 5) <br> Partial Credit <br> - height of Low tide or High tide correctly identified <br> Notes: <br> (i) candidates may show work for this section on graph <br> (ii) accept values from candidate's graph <br> (iii) accept correct answer from graph without work |
| :---: | :---: | :---: |
| (f) | Enter port at 9:30 approx Leave port before 15:15 approx Time $=15: 15-9: 30=5 \mathrm{hr} 45 \mathrm{~min}$ approx. | Scale 5B (0, 2, 5) <br> Partial Credit <br> - time of entry to port or leave port correctly identified <br> - value(s) for $h=2$ and/or $h=1.5$ on sketch <br> - time estimated using relevant values other than those required for the maximum time. <br> Notes: <br> (i) candidates may show relevant work for this section on graph <br> (ii) accept values from candidate's graph |


| Q6 | Model Solution-25 Marks | Marking Notes |
| :---: | :---: | :---: |
| (a) | $\left.\begin{array}{l} f(x+h)-f(x)=(2 x+2 h+4)^{2}-(2 x+4)^{2} \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}= \\ =\lim _{h \rightarrow 0}\left(\frac{\left[\left(4 x^{2}+8 h x+4 h^{2}+16 x+16 h+16\right)\right]}{-\left(4 x^{2}+16 x+16\right)} \frac{(2 x+2 h+4)^{2}-(2 x+4)^{2}}{h}\right. \end{array}\right) .$ <br> or $\begin{gathered} f(x)=(2 x+4)^{2}=4 x^{2}+16 x+16 \\ f(x+h)=4(x+h)^{2}+16(x+h)+16 \\ =4 x^{2}+8 h x+4 h^{2}+16 x+16 h+16 \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ \lim _{h \rightarrow 0} \frac{8 h x+4 h^{2}+16 h}{h} \\ =8 x+16 \end{gathered}$ | Scale 10D (0, 2, 5, 8, 10) <br> Low Partial Credit <br> - any $f(x+h)$ <br> Mid Partial Credit <br> - limit of $\frac{f(x+h)-f(x)}{h}$ <br> High Partial Credit <br> - limit of $\frac{(2 x+2 h+4)^{2}-(2 x+4)^{2}}{h}$ <br> Notes: <br> - omission of limit sign penalised once only <br> - answer not from $1^{\text {st }}$ Principles merits 0 marks |
| (b) <br> (i)+ <br> (ii) | $\begin{gathered} y=x \cdot \sin \frac{1}{x} \\ \frac{d y}{d x}=\sin \frac{1}{x}+x\left(\cos \frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right) \\ \frac{d y}{d x}=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x} \\ \frac{d y}{d x}=\sin \frac{\pi}{4}-\frac{\pi}{4} \cos \frac{\pi}{4} \\ =0.15 \end{gathered}$ | Scale 15D (0, 4, 7, 11, 15) <br> Low Partial Credit <br> - any correct differentiation <br> Mid Partial Credit <br> - product rule applied <br> High Partial Credit <br> - correct differentiation <br> Note: one penalty for calculator in wrong mode |


| Q7 | Model Solution - 40 Marks | Marking Notes |
| :---: | :---: | :---: |
| (a) <br> (i) | $\begin{gathered} v=\frac{4}{3} \pi r^{3} \Rightarrow \frac{d v}{d r}=4 \pi r^{2} \\ \frac{d v}{d t}=250 \mathrm{~cm}^{3} / \mathrm{s} \\ \frac{d r}{d t}=\frac{d r}{d v} \cdot \frac{d v}{d t}=\frac{1}{4 \pi r^{2}} \cdot 250 \\ \frac{d r}{d t}=\frac{250}{4 \pi 400}=\frac{5}{32 \pi} \mathrm{~cm} / \mathrm{s} \end{gathered}$ | Scale 10C (0, 3, 7, 10) <br> Low Partial Credit <br> - work towards $\frac{d v}{d r}$ or $\frac{d v}{d t}$ or $\frac{d r}{d t}$ <br> High Partial Credit <br> - correct expression for $\frac{d r}{d t}$ |
| (ii) | $\begin{gathered} a=4 \pi r^{2} \Rightarrow \frac{d a}{d r}=8 \pi r \\ \frac{d a}{d t}=\frac{d a}{d r} \cdot \frac{d r}{d t}=8 \pi r \cdot \frac{5}{32 \pi} \\ =\frac{5(20)}{4} \\ =25 \mathrm{~cm}^{2} / \mathrm{s} \end{gathered}$ | Scale 10C (0, 3, 7, 10) <br> Low Partial Credit <br> - work towards $\frac{d a}{d r}$ or $\frac{d a}{d t}$ <br> High Partial Credit <br> - correct expression for $\frac{d a}{d t}$ |
| (b) <br> (i) | $\begin{gathered} -x^{2}+10 x=0 \\ x(-x+10)=0 \\ x=0 \quad \text { or } \quad x=10 \end{gathered}$ | Scale 10C (0, 3, 7, 10) <br> Low Partial Credit <br> - quadratic equation formed <br> - gets $x=0$ only <br> High Partial Credit <br> - quadratic factorised <br> Note: $f^{\prime}(x)=0 \Rightarrow 2 x-10=0 \Rightarrow x=5$ merits 0 marks |
| (ii) | $\begin{aligned} & \frac{1}{10-0} \int_{0}^{10}\left(-x^{2}+10 x\right) d x \\ & \quad=\frac{1}{10}\left[\frac{-x^{3}}{3}+5 x^{2}\right]_{0}^{10} \\ & =\frac{1}{10}\left[\left(\frac{-1000}{3}+500\right)-0\right] \\ & \quad=\frac{-100}{3}+50=\frac{50}{3} \mathrm{~m} \end{aligned}$ | Scale $10 \mathrm{C}(0,3,7,10)$ <br> Low Partial Credit <br> - integration set up <br> High Partial Credit <br> - correct integration with some substitution |


| Q8 | Model Solution - 55 Marks | Marking Notes |
| :---: | :---: | :---: |
| (a) <br> (i) | $\begin{gathered} f(x)=-0 \cdot 274 x^{2}+1 \cdot 193 x+3 \cdot 23 \\ f^{\prime}(x)=-0 \cdot 548 x+1 \cdot 193=0 \\ x=2 \cdot 177 \mathrm{~m} \end{gathered}$ $\begin{gathered} f(2 \cdot 177)=-0 \cdot 274(2 \cdot 177)^{2} \\ +1 \cdot 193(2 \cdot 177)+3 \cdot 23 \\ =-1 \cdot 2986+2 \cdot 5972+3 \cdot 23 \\ =4 \cdot 529 \mathrm{~m} \\ \text { or } \\ -0 \cdot 274\left(x^{2}-\frac{1193}{274} x-\frac{1615}{137}\right) \\ -0 \cdot 274\left(x-\frac{1193}{548}\right)^{2}+4.5285 \\ \text { Max Height }=4 \cdot 529 \mathrm{~m} \end{gathered}$ | Scale 10C (0, 3, 7, 10) <br> Low Partial Credit <br> - any correct differentiation <br> - effort made at completing square <br> - trial and error with more than one value of $x$ tested <br> High Partial Credit <br> - $x$ value correct <br> Note: if correct answer by trial and error, must show points on each side of max point to be lower to earn full credit |
| (ii) | $\begin{gathered} \tan \theta=-0 \cdot 548(4 \cdot 5)+1 \cdot 193 \\ \tan \theta=-1 \cdot 273 \\ \theta=51 \cdot 8^{\circ}=52^{\circ} \end{gathered}$ | Scale 5B ( $0,2,5$ ) <br> Partial Credit <br> - tan <br> Note: right angled triangles may appear in diagram given in equation |
| (iii) | $\begin{gathered} \text { Map } A \rightarrow C \\ (-0 \cdot 5,2 \cdot 565) \rightarrow(0,2) \\ 2 \cdot 177-(-0.5)=2 \cdot 677 \\ 4 \cdot 529-0.565=3 \cdot 964 \\ (2 \cdot 177,4 \cdot 529) \rightarrow(2 \cdot 677,3 \cdot 964) \end{gathered}$ | Scale 5B (0, 2, 5) <br> Partial Credit <br> - $(-0 \cdot 5,2 \cdot 565) \rightarrow(0,2)$ |

(iv)

$$
g(x)=a x^{2}+b x+c
$$

$$
C(0,2) \in g(x)=>c=2
$$

$B(4 \cdot 5,3 \cdot 05) \in g(x)$
$3 \cdot 05=\mathrm{a}(4 \cdot 5)^{2}+\mathrm{b}(4 \cdot 5)+2$
$\Rightarrow 20 \cdot 25 a+4.5 b=1.05 \quad$... (i)
$g^{\prime}(x)=2 a x+b=0$
$\Rightarrow 2 a(2 \cdot 677)+b=0$
$5 \cdot 354 a+b=0$

From (i) and (ii)
$a=-0.273$
$b=1.462$

$$
g(x)=-0 \cdot 273 x^{2}+1 \cdot 462 x+2
$$

[Note: a third equation that could be used is
$3 \cdot 964=a(2 \cdot 677)^{2}+b(2 \cdot 677)+2 \ldots$...iii)]

## Or

Equation of parabola with vertex $(h, k)$ :

$$
g(x)=a(x-h)^{2}+k
$$

$C(0,2)$ on curve: $(h, k)=(2 \cdot 677,3.964)$

$$
\begin{gathered}
2=a(-2 \cdot 677)^{2}+3.964 \\
-1 \cdot 964=a(7 \cdot 166329) \\
a=-0 \cdot 27405=-0.274
\end{gathered}
$$

Parabola:

$$
\begin{gathered}
g(x)=-0.274\left[(x-2.677)^{2}\right]+3.964 \\
\text { or } \\
g(x)=f(x-0.5)-0.565 \\
g(x)=-0.274(x-0.5)^{2}+1.193(x-0.5) \\
\quad+3.23-0.565 \\
g(x)=-0.274 x^{2}+1.467 x+2
\end{gathered}
$$

Scale 10D (0, 2, 5, 8, 10)
Low Partial Credit

- c value found
- relevant equation in $a, b$ and/or $c$


## Mid Partial Credit

- formulated correctly any two equations


## High Partial Credit

- formulated correctly any three equations

Note: $a x^{2}+b x+c$ not in an equation merits 0 marks

## Or

Scale 10D ( $0,2,5,8,10$ )
Low Partial Credit

- equation of curve
- use of C


## Mid Partial Credit

- using peak value


## High Partial Credit

- value of $a$ found
(b) Differentiate $x-\sqrt{x+6}$ with respect to $x$.

$$
\begin{aligned}
& f(x)=x-\sqrt{x+6}=x-(x+6)^{\frac{1}{2}} \\
& f^{\prime}(x)=1-\frac{1}{2}(x+6)^{\frac{1}{2}}=1-\frac{1}{2 \sqrt{x+6}}
\end{aligned}
$$

(c) Find the co-ordinates of the turning point of the function $y=x-\sqrt{x+6}, x \geq-6$.

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 1-\frac{1}{2 \sqrt{x+6}}=0 \\
& \Rightarrow 2 \sqrt{x+6}=1 \\
& \Rightarrow x+6=\frac{1}{4} \\
& \Rightarrow x=-5 \frac{3}{4}
\end{aligned} \begin{aligned}
& f\left(-5 \frac{3}{4}\right)=-5 \frac{3}{4}-\sqrt{\frac{1}{4}}=-6 \frac{1}{4} \\
&\left(-5 \frac{3}{4},-6 \frac{1}{4}\right)
\end{aligned}
$$

(a) (i) Show that $d=0$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x+d \\
& f(0)=0+0+0+d=0 \quad \Rightarrow \quad d=0
\end{aligned}
$$

(ii) Using the fact that $P$ is the point $(-5,0 \cdot 15)$, or otherwise, show that $c=0$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x \\
& f(-5)=0 \cdot 0024(-5)^{3}+0 \cdot 018(-5)^{2}+c(-5)=0 \cdot 15 \\
& \Rightarrow 0 \cdot 15-5 c=0 \cdot 15 \quad \Rightarrow \quad c=0
\end{aligned}
$$

The plane lands horizontally at $O \Rightarrow f^{\prime}(x)=0$ when $x=0$
$f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x+c$
$f^{\prime}(0)=0+0+c=0$
$\Rightarrow c=0$
(b) (i) Find the value of $f^{\prime}(x)$, the derivative of $f(x)$, when $x=-4$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x+d \\
& f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x \\
& f^{\prime}(-4)=0 \cdot 0072(-4)^{2}+0 \cdot 036(-4) \\
& \quad=-0 \cdot 0288
\end{aligned}
$$

(ii) Use your answer to part (b) (i) above to find the angle at which the plane is descending when it is 4 km from touchdown. Give your answer correct to the nearest degree.
$\tan \theta=f^{\prime}(x)=-0 \cdot 0288 \Rightarrow \theta=178 \cdot 3503^{\circ}$
Angle of descent $\alpha=1.6497^{\circ}=2^{\circ}$
(c) Show that (-2.5, 0.075) is the point of inflection of the curve $y=f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x \\
& f^{\prime \prime}(x)=0 \cdot 0144 \quad x+0 \cdot 036=0 \\
& \Rightarrow \quad x=-2 \cdot 5 \\
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2} \\
& f(-2 \cdot 5)=0 \cdot 0024(-2 \cdot 5)^{3}+0 \cdot 018(-2 \cdot 5)^{2} \\
& \quad=-0 \cdot 0375+0 \cdot 1125=0 \cdot 075 \\
& (-2 \cdot 5,0 \cdot 075)
\end{aligned}
$$

(d) (i) If $(x, y)$ is a point on the curve $y=f(x)$, verify that $(-x-5,-y+0 \cdot 15)$ is also a point on $y=f(x)$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2} \\
& f(-x-5)=0 \cdot 0024(-x-5)^{3}+0 \cdot 018(-x-5)^{2} \\
& =0 \cdot 0024\left(-x^{3}-15 x^{2}-75 x-125\right)+0 \cdot 018\left(x^{2}+10 x+25\right) \\
& =-0 \cdot 0024 x^{3}-0 \cdot 018 x^{2}+0 x+0 \cdot 15 \\
& =-y+0 \cdot 15
\end{aligned}
$$

(ii) Find the image of $(-x-5,-y+0 \cdot 15)$ under symmetry in the point of inflection.

Point: $(-x-5,-y+0 \cdot 15)$
Point of inflection: $(-2.5,0.075)$
Change in $x$ value: $(-2 \cdot 5)-(-x-5)=x+2 \cdot 5$
Change in $y$ value: $0.075-(-y+0 \cdot 15)=y-0.075$
Image of point of inflection:
$x$ value: $-2 \cdot 5+(x+2 \cdot 5)=x$
$y$ value: $0 \cdot 075+(y-0 \cdot 075)=y$
$\Rightarrow(x, y)$ is image

Let $(x, y)$ be the image.

$$
\left(\frac{-x-5+x}{2}, \frac{-y+0 \cdot 15+y}{2}\right)=(-2 \cdot 5,0 \cdot 075) \text {, the point of inflection }
$$

(a) (i) Complete the table below to show the total volume of oil on the water after each of the first 6 minutes of the oil-spill.

| Time (minutes) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Volume $\left(10^{6} \mathrm{~cm}^{3}\right)$ | 4 | 8 | 12 | 16 | 20 | 24 |

(ii) Draw a graph to show the total volume of oil on the water over the first 6 minutes.

(iii) Write an equation for $V(t)$, the volume of oil on the water, in $\mathrm{cm}^{3}$, after $t$ minutes.

Line, slope $4 \times 10^{6}$, passing through $(0,0)$.
$V(t)=\left(4 \times 10^{6}\right) t$
(b) The spilled oil forms a circular oil slick $\mathbf{1}$ millimetre thick.
(i) Write an equation for the volume of oil in the slick, in $\mathrm{cm}^{3}$, when the radius is $r \mathrm{~cm}$.

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi r^{2}(0 \cdot 1) \\
& =0 \cdot 1 \pi r^{2} \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Find the rate, in cm per minute, at which the radius of the oil slick is increasing when the radius is 50 m .

$$
\begin{aligned}
& \frac{d V}{d t}=4 \times 10^{6} \mathrm{~cm}^{3} \text { per minute } \\
& V=\pi r^{2} h \text { where } h=0 \cdot 1 \mathrm{~cm} \\
& \frac{d V}{d r}=2 \pi r h \\
& \frac{d V}{d r}=0 \cdot 2 \pi r \\
& \begin{aligned}
\frac{d r}{d t} & =\frac{d r}{d V} \frac{d V}{d t}
\end{aligned}=\frac{1}{0 \cdot 2 \pi r} \times 4 \times 10^{6} \\
& \\
& =\frac{4 \times 10^{6}}{0 \cdot 2 \pi(5000)}=1273 \cdot 3 \mathrm{~cm} \mathrm{per} \mathrm{minute}
\end{aligned}
$$

(c) Show that the area of water covered by the oil slick is increasing at a constant rate of $4 \times 10^{7} \mathrm{~cm}^{2}$ per minute.

$$
\begin{aligned}
& A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r \\
& \frac{d A}{d t}=\frac{d A}{d r} \frac{d r}{d t}=2 \pi r \frac{4 \times 10^{6}}{0 \cdot 2 \pi r}=4 \times 10^{7} \mathrm{~cm}^{2} \text { per minute }
\end{aligned}
$$

or

$$
\begin{aligned}
& (0 \cdot 1) \pi r^{2}=\left(4 \times 10^{6}\right) t \\
& \Rightarrow A=\pi r^{2}=\left(4 \times 10^{7}\right) t \\
& \frac{d A}{d t}=4 \times 10^{7}
\end{aligned}
$$

(d) The nearest land is 1 km from the point at which the oil-spill began. Find how long it will take for the oil slick to reach land. Give your answer correct to the nearest hour.

$$
\begin{aligned}
& A=\pi r^{2}=\pi\left(10^{5}\right)^{2}=\pi 10^{10} \mathrm{~cm}^{2} \\
& \begin{aligned}
t=\frac{\pi 10^{10}}{4 \times 10^{7}}=\frac{\pi 10^{3}}{4} & =785 \cdot 398 \text { minutes } \\
& =13 \cdot 09=13 \text { hours }
\end{aligned}
\end{aligned}
$$

(a) Find the length of the day in Galway on June $5^{\text {th }}$ (76 days after March $21^{\text {stt }}$ ). Give your answer in hours and minutes, correct to the nearest minute.

$$
\begin{aligned}
& f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right) \\
& f(76)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} \times 76\right) \\
& =12 \cdot 25+4 \cdot 587=16 \cdot 837=16 \text { hours } 50 \text { minutes }
\end{aligned}
$$

(b) Find a date on which the length of the day in Galway is approximately 15 hours.

$$
\begin{aligned}
& f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)=15 \\
& \Rightarrow \sin \left(\frac{2 \pi}{365} t\right)=0 \cdot 578947 \\
& \Rightarrow \frac{2 \pi}{365} t=0 \cdot 6174371 \\
& \Rightarrow t=35 \cdot 87
\end{aligned}
$$

36 days after March 21 is April 26.
(c) Find $f^{\prime}(t)$, the derivative of $f(t)$.

$$
\begin{aligned}
f(t) & =12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right) \\
f^{\prime}(t) & =0+4 \cdot 75 \times \frac{2 \pi}{365} \cos \left(\frac{2 \pi}{365} t\right) \\
& =\frac{9 \cdot 5 \pi}{365} \cos \left(\frac{2 \pi}{365}\right) t
\end{aligned}
$$

(d) Hence, or otherwise, find the length of the longest day in Galway.
$f(t)$ is a maximum when $\sin \left(\frac{2 \pi}{365} t\right)$ is a maximum of 1 .
$t=12 \cdot 25+4 \cdot 75=17$ hours
or

$$
\begin{aligned}
& f^{\prime}(t)=0 \Rightarrow \frac{9 \cdot 5 \pi}{365} \cos \left(\frac{2 \pi}{365} t\right)=0 \\
& \Rightarrow \cos \left(\frac{2 \pi}{365} t\right)=0 \\
& \Rightarrow \frac{2 \pi}{365} t=\frac{\pi}{2} \\
& \Rightarrow t=\frac{365}{4}=91 \cdot 25 \\
& \begin{aligned}
f(91 \cdot 25) & =12 \cdot 25+4.75 \sin \left(\frac{2 \pi}{365} \times 91 \cdot 25\right) \\
& =12 \cdot 25+4 \cdot 75 \sin \frac{\pi}{2} \\
& =17 \text { hours }
\end{aligned}
\end{aligned}
$$

(e) Use integration to find the average length of the day in Galway over the six months from March $21^{\text {st }}$ to September $21^{\text {st }}$ (184 days). Give your answer in hours and minutes, correct to the nearest minute.

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & =\frac{1}{184} \int_{0}^{184}\left(12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)\right) d t \\
& =\frac{1}{184}\left[12 \cdot 25 t-4 \cdot 75 \times \frac{365}{2 \pi} \cos \left(\frac{2 \pi}{365} t\right)\right]_{0}^{184} \\
& =\frac{1}{184}[(2254+275 \cdot 843)-(0-275 \cdot 934)] \\
& =\frac{1}{184}[2805 \cdot 777] \\
& =15 \cdot 24879 \\
& =15 \text { hours } 15 \text { minutes }
\end{aligned}
$$

(a) Differentiate the function $2 x^{2}-3 x-6$ with respect to $x$ from first principles.

$$
\begin{aligned}
& f(x)=2 x^{2}-3 x-6 \\
& f(x+h)=2(x+h)^{2}-3(x+h)-6=2 x^{2}+4 x h+2 h^{2}-3 x-3 h-6 \\
& f(x+h)-f(x)=4 x h+2 h^{2}-3 h \\
& \operatorname{Limit}_{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\operatorname{Limit}_{h \rightarrow 0}\left(\frac{4 x h+2 h^{2}-3 h}{h}\right)=4 x-3
\end{aligned}
$$

(b) Let $f(x)=\frac{2 x}{x+2}, x \neq-2, x \in \mathbb{R}$. Find the co-ordinates of the points at which the slope of the tangent to the curve $y=f(x)$ is $\frac{1}{4}$.

$$
\begin{aligned}
& f(x)=\frac{2 x}{x+2} \\
& \text { Let } u(x)=2 x \Rightarrow u^{\prime}(x)=2 \text { and } v(x)=x+2 \Rightarrow v^{\prime}(x)=1 \\
& f^{\prime}(x)=\frac{(x+2)(2)-2 x(1)}{(x+2)^{2}}=\frac{4}{(x+2)^{2}} \\
& f^{\prime}(x)=\frac{1}{4} \Rightarrow \frac{4}{(x+2)^{2}}=\frac{1}{4} \\
& \Rightarrow 16=(x+2)^{2} \\
& \Rightarrow x+2=4 \text { or } x+2=-4 \\
& \Rightarrow x=2 \text { or } x=-6 \\
& \text { or } \\
& x^{2}+4 x-12=0 \\
& (x-2)(x+6)=0 \\
& \Rightarrow x-2=0 \text { or } x+6=-0 \\
& \Rightarrow x=2 \text { or } x=-6
\end{aligned}
$$

$f(-6)=\frac{-12}{-6+2}=3$ and $f(2)=\frac{4}{2+2}=1$
Points $(-6,3)$ and $(2,1)$
(i) Find the value of $f(0.2)$

Substituting 0.2 for $x$ gives

$$
f(0.2)=-0.5(0.2)^{2}+5(0.2)-0.98=-0.5(0.04)+1-0.98=0
$$

## иооа алмав

## themathstutorie

ONLINE SUPPORT SYSTEM FOR PROJECT MATHS
(ii) Show that $f$ has a local maximum point at $(5,11.52)$.

First we calculate the derivative of $f$ :

$$
f^{\prime}(x)=-0.5(2 x)+5(1)-0=-x+5 .
$$

Now $f^{\prime}(5)=-5+5=0$. Therefore $x=5$ is a stationary point.
Now

$$
f^{\prime \prime}(x)=-1 .
$$

So $f^{\prime \prime}(5)=-1<0$. That means that $x=-5$ is a local maximum. Finally,

$$
f(5)=-0.5\left(5^{2}\right)+5(5)-0.98=11.52 .
$$

Therefore the graph of $f$ has a local maximum point at $(5,11.52)$.

## MODEL ANSWER BY

themathstutor.ie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS


Note that between $t=0$ and $t=0.2$ the graph is just a horizontal line along the $t$-axis. Likewise, for $t \geq 5$ the graph is a horizontal line at height $v=11.52$. In between $t=0.2$ and $t=5$ the function is a quadratic so the graph must be a parabola. We can sketch this by evaluating the function at three or four points. For example $v(1)=3.52, v(2)=7.02$, $v(3)=9.52$ and $v(4)=11.02$. So we plot the points $(1,3.52),(2,7.02),(3,9.52)$ and $(4,11.02)$ and then join them by a smooth curve. Make sure that this parabolic arc starts at $(0.2,0)$ and ends at $(5,11.52)$.


## woansmer

themathstutorie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS
(ii) Find the distance travelled by the sprinter in the first 5 seconds of the race.

The distance travelled in the first 5 seconds of the race is given by

$$
\int_{0}^{5} v(t) d t
$$

Now

$$
\begin{aligned}
\int_{0}^{5} v(t) d t & =\int_{0}^{0.2} v(t) d t+\int_{0.2}^{5} v(t) d t \\
& =\int_{0}^{0.2} 0 d t+\int_{0.2}^{5}\left(-0.5 t^{2}+5 t-0.98\right) d t \\
& =0+\int_{0.2}^{5}\left(-0.5 t^{2}+5 t-0.98\right) d t \\
& =\int_{0.2}^{5}\left(-0.5 t^{2}+5 t-0.98\right) d t \\
& =\frac{-0.5 t^{3}}{3}+\frac{5 t^{2}}{2}-\left.0.98 t\right|_{0.2} ^{5} \\
& =\frac{0.5\left(5^{3}\right)}{3}+\frac{5\left(5^{2}\right)}{2}-0.98(5)-\left(\frac{0.5\left(0.2^{3}\right)}{3}+\frac{5\left(0.2^{2}\right)}{2}-0.98(0.2)\right) \\
& =36.864
\end{aligned}
$$

So the sprinter travels 36.864 metres in the first 5 seconds of the race.
(iii) Find the sprinter's finishing time for the race. Give your answer correct to two decimal places.

We have just seen that the sprinter travels 36.864 metres in the first 5 seconds of the race. So he has 63.136 metres left to travel to complete the race at that point. Also after 5 seconds, his velocity is a constant 11.52 metres per second. Therefore it will take him a further $\frac{63.136}{11.52}$ seconds to complete the race. Now $\frac{63.136}{11.52}=5.48$ correct to two decimal places. So his total time is $5+5.48=10.48$ seconds, correct to two decimal places.


After 7 seconds the sprinter's velocity doesn't change. So the first step is to calculate how far he has travelled in the first 7 seconds of the race. As in part (ii) this is equal to the value of the defnite integral

$$
\int_{0.2}^{7}\left(-0.5 t^{2}+5 t-0.98\right) d t
$$

Now

$$
\begin{aligned}
\int_{0}^{7}\left(-0.5 t^{2}+5 t-0.98\right) d t= & \frac{-0.5 t^{3}}{3}+\frac{5 t^{2}}{2}-\left.0.98 t\right|_{0.2} ^{7} \\
= & \frac{0.5\left(7^{3}\right)}{3}+\frac{5\left(7^{2}\right)}{2}-0.98(7) \\
& -\left(\frac{0.5\left(0.2^{3}\right)}{3}+\frac{5\left(0.2^{2}\right)}{2}-0.98(0.2)\right) \\
= & 58.571
\end{aligned}
$$

So he travels 58.571 metres in 7 seconds. Therefore, he has $100-58.571-41.429$ metres left to travel at that point. His velocity for rest of the race is 11.52 metres per second. Therefore it will take him another $\frac{41.429}{11.52}=3.596$ seconds to complete the race. So his total time for the race is $7+3.596=10.596$. So it takes him 10.60 seconds to finish the race, correct to two decimal places.

MODEL ANSWER BY
themathstutor.ie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS
(c) A spherical snowball is melting at a rate proportional to its surface area. That is, the rate at which its volume is decreasing at any instant is proportional to its surface area at that instant.
(i) Prove that the radius of the snowball is decreasing at a constant rate.

Let $t$ be time. Let $r$ be the radius, $A$ the surface area and $V$ the volume of the snowball. From the Formula and Tables booklet we know that $A=4 \pi r^{2}$ and $V=\frac{4}{3} \pi r^{3}$. In particular,

$$
\frac{d V}{d r}=\frac{4}{3} \pi\left(3 r^{2}\right)=4 \pi r^{2}=A .
$$

Now we are told that the rate of change of volume with respect to time is proportional to the surface area. In other words,

$$
\begin{equation*}
\frac{d V}{d t}=k A \tag{1}
\end{equation*}
$$

for some constant $k$. Clearly $k<0$ since the volume of the snowball is decreasing as it melts. On the other hand, using the chain rule, we see that

$$
\begin{align*}
\frac{d V}{d t} & =\frac{d V}{d r} \frac{d r}{d t} \\
& =A \frac{d r}{d t} \tag{2}
\end{align*}
$$

Therefore by combining (1) and (2), we see that

$$
A \frac{d r}{d t}=k A .
$$

Now dividing across by $A$ yields

$$
\frac{d r}{d t}=k
$$

where $k$ is a constant, as required.


## themathstutor.ie <br> ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

(ii) If the snowball loses half of its volume in an hour, how long more will it take for it to melt completely?

Give your answer to the nearest minute.

Let $r_{0}$ be the initial radius and let $r_{2}$ be the radius after 1 hour.
So the initial volume is $\frac{4}{3} \pi r_{0}^{3}$. Therefore after one hour, the volume is $\frac{2}{3} \pi r_{0}^{3}$. Therefore

$$
\frac{4}{3} \pi r_{1}^{3}=\frac{2}{3} \pi r_{0}^{2} .
$$

Therefore

$$
\left(\frac{r_{1}}{r_{0}}\right)^{3}=\frac{1}{2}
$$

or

$$
r_{1}=\frac{1}{\sqrt[3]{2}} r_{0}
$$

Now the radius is decreasing at a constant rate and we have found that it takes 1 hour for it to decrease from $r_{0}$ to $\frac{1}{\sqrt[3]{2}} r_{0}$. Therefore the rate of change of the radius is $r_{0}-\frac{1}{\sqrt[3]{2}} r_{0}$ units per hour.
Now the snowball will have melted completely when the radius reaches 0 . So we calculate the time required to to change from $r_{0}$ to 0 . This will be

$$
\frac{\text { total change }}{\text { rate of change }}=\frac{r_{0}-0}{r_{0}-\frac{1}{\sqrt[3]{2}} r_{0}}=\frac{1}{1-\frac{1}{\sqrt[3]{2}}} \text { hours. }
$$

This is equal to 4.8473 hours (correct to four decimal places). So it will take 3.8473 more hours (after the 1 already elapsed) for it to melt completely.
Now 3.8473 hours is equal $3.8473 \times 60=230.84$.
So, to the nearest minute, it will take a further 231 minutes for the snowball to melt completely.

