Question 1

(ii) Explain what is meant by the indefinite integral of a function f.

The indefinite integral of f is the general form of a function whose derivative is f.
Alternative answer: The indefinite integral of f is $F(x)+C$ where $F^{\prime}=f$ and C is constant (the constant of integration).

ONLINE SUPPORT SYSTEM FOR PROJECT MATHS
(iii) Write down the indefinite integral of g, the function in part (i).

Answer: $\int g(x) d x=\frac{1}{4} x^{4}-x^{3}+3 x+C$.
(b) (i) Let $h(x)=x \ln x$, for $x \in \mathbb{R}, x>0$.

Find $h^{\prime}(x)$.

Using the product rule we see that

$$
h^{\prime}(x)=(x)^{\prime} \ln x+x(\ln x)^{\prime} .
$$

But $(x)^{\prime}=1$ and $(\ln x)^{\prime}=\frac{1}{x}$. Therefore

$$
\begin{aligned}
h^{\prime}(x) & =(1) \ln x+x\left(\frac{1}{x}\right) \\
& =\ln x+1
\end{aligned}
$$

MODEL ANSUVER BY
themathstutorie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS
(ii) Hence, find $\int \ln x d x$.

We know that $h^{\prime}(x)=\ln x+1$. Also, we know that $(x)^{\prime}=1$. So if $F(x)=h(x)-x$, then

$$
F^{\prime}(x)=h^{\prime}(x)-(x)^{\prime}=\ln x+1-1=\ln x
$$

Therefore $\int \ln x d x=F(x)+c$. But $F(x)=h(x)-x=x \ln x-x$. Therefore

$$
\int \ln x d x=x \ln x-x+C
$$

noon manary
themathstutorie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

Question 2

Type of function	Function	First derivative	Second derivative
Quadratic	k	B	I
Cubic	f	D	II
Trigonometric	g	A	III
Exponential	h	C	IV

(b) For one row in the table, explain your choice of first derivative and second derivative.

A quadratic function differentiates to a line which differentiates to a constant.

Question 3

(a) Differentiate the function $2 x^{2}-3 x-6$ with respect to x from first principles.

$$
\begin{aligned}
& f(x)=2 x^{2}-3 x-6 \\
& f(x+h)=2(x+h)^{2}-3(x+h)-6=2 x^{2}+4 x h+2 h^{2}-3 x-3 h-6 \\
& f(x+h)-f(x)=4 x h+2 h^{2}-3 h \\
& \operatorname{Limit}_{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\operatorname{Limit}_{h \rightarrow 0}\left(\frac{4 x h+2 h^{2}-3 h}{h}\right)=4 x-3
\end{aligned}
$$

(b) Let $f(x)=\frac{2 x}{x+2}, x \neq-2, x \in \mathbb{R}$. Find the co-ordinates of the points at which the slope of the tangent to the curve $y=f(x)$ is $\frac{1}{4}$.

$$
\begin{aligned}
& f(x)=\frac{2 x}{x+2} \\
& \begin{array}{ll}
\text { Let } u(x)=2 x \Rightarrow u^{\prime}(x)=2 \text { and } v(x)=x+2 \Rightarrow v^{\prime}(x)=1
\end{array} \\
& f^{\prime}(x)=\frac{(x+2)(2)-2 x(1)}{(x+2)^{2}}=\frac{4}{(x+2)^{2}} \\
& f^{\prime}(x)=\frac{1}{4} \Rightarrow \frac{4}{(x+2)^{2}}=\frac{1}{4} \\
& \Rightarrow 16=(x+2)^{2} \\
& \Rightarrow x+2=4 \text { or } x+2=-4 \\
& \Rightarrow x=2 \text { or } x=-6
\end{aligned} \quad \begin{aligned}
& \text { or } \\
& \begin{array}{ll}
x^{2}+4 x-12=0 \\
(x-2)(x+6)=0 \\
\Rightarrow x-2=0 \text { or } x+6=-0 \\
\Rightarrow x=2 \text { or } x=-6
\end{array} \\
& f(-6)=\frac{-12}{-6+2}=3 \text { and } f(2)=\frac{4}{2+2}=1
\end{aligned}
$$

(i) Find the value of $f(0.2)$

Substituting 0.2 for x gives

$$
f(0.2)=-0.5(0.2)^{2}+5(0.2)-0.98=-0.5(0.04)+1-0.98=0
$$

(ii) Show that f has a local maximum point at $(5,11.52)$.

First we calculate the derivative of f :

$$
f^{\prime}(x)=-0.5(2 x)+5(1)-0=-x+5 .
$$

Now $f^{\prime}(5)=-5+5=0$. Therefore $x=5$ is a stationary point. Now

$$
f^{\prime \prime}(x)=-1
$$

So $f^{\prime \prime}(5)=-1<0$. That means that $x=-5$ is a local maximum. Finally,

$$
f(5)=-0.5\left(5^{2}\right)+5(5)-0.98=11.52
$$

Therefore the graph of f has a local maximum point at $(5,11.52)$.

Note that between $t=0$ and $t=0.2$ the graph is just a horizontal line along the t-axis. Likewise, for $t \geq 5$ the graph is a horizontal line at height $v=11.52$. In between $t=0.2$ and $t=5$ the function is a quadratic so the graph must be a parabola. We can sketch this by evaluating the function at three or four points. For example $v(1)=3.52, v(2)=7.02$, $v(3)=9.52$ and $v(4)=11.02$. So we plot the points $(1,3.52),(2,7.02),(3,9.52)$ and $(4,11.02)$ and then join them by a smooth curve. Make sure that this parabolic arc starts at $(0.2,0)$ and ends at $(5,11.52)$.

(ii) Find the distance travelled by the sprinter in the first 5 seconds of the race.

The distance travelled in the first 5 seconds of the race is given by

$$
\int_{0}^{5} v(t) \quad d t
$$

Now

$$
\begin{aligned}
\int_{0}^{5} v(t) d t & =\int_{0}^{0.2} v(t) d t+\int_{0.2}^{5} v(t) d t \\
& =\int_{0}^{0.2} 0 d t+\int_{0.2}^{5}\left(-0.5 t^{2}+5 t-0.98\right) d t \\
& =0+\int_{0.2}^{5}\left(-0.5 t^{2}+5 t-0.98\right) d t \\
& =\int_{0.2}^{5}\left(-0.5 t^{2}+5 t-0.98\right) d t \\
& =\frac{-0.5 t^{3}}{3}+\frac{5 t^{2}}{2}-\left.0.98 t\right|_{0.2} ^{5} \\
& =\frac{0.5\left(5^{3}\right)}{3}+\frac{5\left(5^{2}\right)}{2}-0.98(5)-\left(\frac{0.5\left(0.2^{3}\right)}{3}+\frac{5\left(0.2^{2}\right)}{2}-0.98(0.2)\right) \\
& =36.864
\end{aligned}
$$

So the sprinter travels 36.864 metres in the first 5 seconds of the race.
(iii) Find the sprinter's finishing time for the race. Give your answer correct to two decimal places.

We have just seen that the sprinter travels 36.864 metres in the first 5 seconds of the race. So he has 63.136 metres left to travel to complete the race at that point. Also after 5 seconds, his velocity is a constant 11.52 metres per second. Therefore it will take him a further $\frac{63.136}{11.52}$ seconds to complete the race. Now $\frac{63.136}{11.52}=5.48$ correct to two decimal places. So his total time is $5+5.48=10.48$ seconds, correct to two decimal places.

Question 5

7 (a)

$$
2 x+3 y^{2} \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1-2 x}{3 y^{2}} . \therefore \text { Slope of tangent at }(3,-2)=\frac{-5}{12} .
$$

7 (b) (i)

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1(t+1)-1(t-1)}{(t+1)^{2}}=\frac{2}{(t+1)^{2}} . \\
& \frac{d y}{d t}=\frac{-4(t+1)^{2}+4 t(2)(t+1)}{(t+1)^{4}}=\frac{-4(t+1)+8 t}{(t+1)^{3}}=\frac{4(t-1)}{(t+1)^{3}} .
\end{aligned}
$$

7 (b) (ii)

$$
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{4(t-1)}{(t+1)^{3}} \times \frac{(t+1)^{2}}{2}=\frac{2(t-1)}{t+1}=2 x .
$$

7 (c) (i)

$$
\begin{aligned}
& f(x): x \rightarrow \tan ^{-1}\left(\frac{-x}{x+1}\right) \\
& f^{\prime}(x)=\frac{1}{1+\left(\frac{-x}{x+1}\right)^{2}} \times \frac{-1(x+1)+x(1)}{(x+1)^{2}}=\frac{(x+1)^{2}}{x^{2}+2 x+1+x^{2}} \times \frac{-1}{(x+1)^{2}}=\frac{-1}{2 x^{2}+2 x+1} .
\end{aligned}
$$

OR

$$
\begin{array}{rlr}
y & =\tan ^{-1}\left(\frac{-x}{x+1}\right) & =\sqrt{2 x^{2}+2 x+1} \\
\tan y & =\frac{-x}{x+1} & \\
\sec ^{2} y \cdot \frac{d y}{d x}=\frac{(x+1)(-1)-(-x)(1)}{(x+1)^{2}} & \cos y \\
\frac{1}{\cos ^{2} y \cdot \frac{d y}{d x}}=\frac{-x-1+x}{(x+1)^{2}} & \cos ^{2} y \\
\frac{1}{\cos ^{2} y} \cdot \frac{d y}{d x} & =\frac{-1}{(x+1)^{2}} & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-\cos ^{2} y}{(x+1)^{2}} \\
& =\frac{-1}{(x+1)^{2}} \cdot \frac{(x+1)^{2}}{2 x^{2}+2 x+1} \\
& =\frac{-1}{2 x^{2}+2 x+1}
\end{aligned}
$$

7 (c) (ii)
Diagram A is correct.
It cannot be Diagram B, as these curves are not "parallel" (i.e. identical up to a vertical shift, which is necessary because their derivatives are equal for all x).
It cannot be Diagram C as these graphs are increasing, whereas they should be decreasing, because their derivatives are negative for $x>0$.

OR

Given $f^{\prime}(x)=g^{\prime}(x)$
$\Rightarrow m_{1}=m_{2} \quad$ (same slopes)
\Rightarrow parallel curves

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-1}{2 x^{2}+2 x+1}<0 \text { when } x>0 \\
& \Rightarrow \text { Both } f(x) \text { and } g(x) \text { are decreasing funtions. }
\end{aligned}
$$

Diagram A: correct
Diagram B: not parallel curves
Diagram C: increasing curves

Question 6

7 (a)

$$
\begin{aligned}
& x^{2}-y^{2}=25 \\
y^{2}= & x^{2}-25 \\
y= & \sqrt{x^{2}-25} \\
y= & \left(x^{2}-25\right)^{\frac{1}{2}} \\
\frac{d y}{d x} & =\frac{1}{2}\left(x^{2}-25\right)^{-\frac{1}{2}} \cdot 2 x \\
= & \frac{x}{\sqrt{x^{2}-25}} \\
= & \frac{x}{y}
\end{aligned}
$$

$$
\text { OR } \begin{aligned}
y & =-\sqrt{x^{2}-25} \\
y & =-\left(x^{2}-25\right)^{\frac{1}{2}} \\
\frac{d y}{d x} & =-\left[\frac{1}{2}\left(x^{2}-25\right)^{-\frac{1}{2}} \cdot 2 x\right] \\
& =-\left[\frac{x}{\sqrt{x^{2}-25}}\right] \\
& =\frac{x}{y}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{x}{y}
$$

7 (b) (i)

$$
\begin{aligned}
& x=\frac{3 t}{t^{2}-2} \Rightarrow \frac{d y}{d t}=\frac{3\left(t^{2}-2\right)-3 t \cdot 2 t}{\left(t^{2}-2\right)^{2}}=\frac{-3 t^{2}-6}{\left(t^{2}-2\right)^{2}} \\
& y=\frac{6}{t^{2}-2}=6\left(t^{2}-2\right)^{-1} \Rightarrow \frac{d y}{d t}=-6\left(t^{2}-2\right)^{-2} \cdot 2 t=\frac{-12 t}{\left(t^{2}-2\right)^{2}} \\
& \frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{-12 t}{\left(t^{2}-2\right)^{2}} \cdot \frac{\left(t^{2}-2\right)^{2}}{-3 t^{2}-6}=\frac{12 t}{3 t^{2}+6}=\frac{4 t}{t^{2}+2}
\end{aligned}
$$

(b)(ii) Slope, point

Att 2 Equation 5 marks

7 (b) (ii)
$t=2 \Rightarrow x=\frac{6}{2}=3$ and $t=2 \Rightarrow y=\frac{6}{2}=3 . \quad \therefore$ Point is $(3,3)$.
Slope of tangent at $t=2$ is $\frac{8}{6}=\frac{4}{3}$.
\therefore Equation of tangent: $y-3=\frac{4}{3}(x-3) \Rightarrow 4 x-3 y-3=0$.
(c) (i)

5 marks
Att 2
$f(x)=x^{3}-3 x^{2}+3 x-4$.
$f(2)=8-12+6-4=-2<0$.
$f(3)=27-27+9-4=5>0$.
\therefore root lies between 2 and 3 .
(c) (ii)

5 marks
Att 2

$$
\begin{aligned}
f(2.5) & =(2.5)^{3}-3(2.5)^{2}+3(2.5)-4 \\
& =15.625-18.75+7.5-4 \\
& =0.375
\end{aligned}
$$

$f(2)<0$ and $f(2.5)>0 . \therefore$ root is between 2 and 2.5 .
So, root is closer to 2 than to 3 .
(c) (iii) Formula + Differentiation Finish

5 marks
5 marks

Att 2
Att 2

7 (c) (iii)
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$, where $f(x)=x^{3}-3 x^{2}+3 x-4$ and $f^{\prime}(x)=3 x^{2}-6 x+3$
Ann: $f(2)=-2$ and $f^{\prime}(2)=3 . x_{2}=2-\frac{f(2)}{f^{\prime}(2)}=2-\frac{-2}{3}=2 \frac{2}{3}=2.666 \ldots$
Barry: $f(3)=5$ and $f^{\prime}(3)=12 . x_{2}=3-\frac{f(3)}{f^{\prime} 3}=3-\frac{5}{12}=2 \frac{7}{12}=2.583 \ldots$
Both of these are above the root, so the lower one is closer (i.e. Barry's).

Part (a)
Part (b)
Part (c)
Part (a)
7 (a) Taking 1 as a first approximation of a root of $x^{3}+2 x-4=0$, use the Newton Raphson method to calculate a second approximation of this root.
(a)
10 marks
Att 3

7 (a)

$$
\begin{array}{rrr}
f(x)=x^{3}+2 x-4 & f^{\prime}(x)=3 x^{2}+2 \\
f(1)=(1)^{3}+2(1)-4=-1 & f^{\prime}(1)=3(1)^{2}+2= \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} & & x_{1}=1 \\
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} & \\
=1-\frac{(-1)}{5} \quad=1+\frac{1}{5} \quad=\frac{6}{5} &
\end{array}
$$

Blunder (-3)

B1 Newton-Raphson formula once only
B2 Differentiation
B3 Indices
B4 $x_{1} \neq 1$ once only
Slips (-1)
S1 Numerical
S2 Answer not tidied up

Part (b)
7 (b) (i) Find the equation of the tangent to the curve $3 x^{2}+y^{2}=28$ at the point $(2,-4)$.
(ii) $x=e^{t} \cos t$ and $y=e^{t} \sin t$. Show that $\frac{d y}{d x}=\frac{x+y}{x-y}$.
(i) Differentiation

Equation
7 (b)(i)

$$
\begin{aligned}
& 3 x^{2}+y^{2}=28 \\
& 6 x+2 y \frac{d y}{d x}=0 \\
& 2 y\left(\frac{d y}{d x}\right)=-6 x \\
& \frac{d y}{d x}=\frac{-6 x}{2 y}=\frac{-3 x}{y}
\end{aligned}
$$

5 marks

At $(2,-4)$, slope $=\frac{d y}{d x}=\frac{-3(2)}{-4}=\frac{3}{2}$
Tangent is line through $(2,-4)$ with slope $m=\frac{3}{2}$

$$
\begin{aligned}
& \left(y-y_{1}\right)=m\left(x-x_{1}\right) \\
& y-(-4)=\frac{3}{2}(x-2) \\
& 2(y+4)=3(x-2) \\
& 2 y+8=3 x-6 \\
& 3 x-2 y-14=0
\end{aligned}
$$

Blinders (-3)
B1 Differentiation
B2 Incorrect values or no values
B3 Indices
B4 Equation of tangent
B5 Substituting values into formula once only
Slips (-1)
S1 Numerical

Worthless

W1 Integration
W2 No differentiation in $1^{\text {st } 5} 5$ marks

7 (b)(ii) $\quad x=e^{t}$ (cost)

$$
\begin{aligned}
& \frac{d x}{d t}=e^{t}(-\sin t)+\cos t\left(e^{t}\right) \\
& \frac{d x}{d t}=e^{t} \cos t-e^{t} \sin t
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{e^{t} \cos t+e^{t} \sin t}{e^{t} \cos t-e^{t} \sin t}=\frac{x+y}{x-y}
$$

* Note: oversimplified differentiation in first 5 marks leads to Att 2 at most in second marks Blunders (-3)
B1 Differentiation
B2 Indices
B3 Incorrect $\frac{d y}{d x}$
B4 Answer not in required form

Attempts

A1 Blunder in differentiation formula
Worthless
W1 Integration

7 (c) $f(x)=\log _{\mathrm{c}} 3 x-3 x$, where $x>0$.
(i) Show that $\left(\frac{1}{3},-1\right)$ is a local maximum point of $f(x)$.
(ii) Deduce that the graph of $f(x)$ does not intersect the x-axis.
(i) Differentiation

Max Value
(ii) Only one root for $f^{\prime}(x)=0$

Absolute max pt.

5 marks
5 marks
5 marks
5 marks

Att 2
Att 2
Att 2
Att 2

7 (c)(i) $\quad f(x)=\ln (3 x)-3 x \quad x>0$

$$
f^{\prime}(x)=\frac{1}{3 x}(3)-3=\frac{1}{x}-3 .
$$

$$
f^{\prime \prime}(x)=\frac{-1}{x^{2}}
$$

Local max $/$ min: $f^{\prime}(x)=0 \Rightarrow \frac{1}{x}-3=0 \Rightarrow \frac{1}{x}=3 \Rightarrow x=\frac{1}{3}$.
$x=\frac{1}{3} \Rightarrow f^{\prime \prime}(x)=\frac{-1}{x^{2}}=\frac{-1}{\left(\frac{1}{3}\right)^{2}}<0 \Rightarrow$ local max at $x=\frac{1}{3}$
$x=\frac{1}{3} \Rightarrow f(x)=\ln (3 x)-(3 x) \quad=\ln (1)-(1)=0-1=-1 \Rightarrow$ Local max at $\left(\frac{1}{3},-1\right)$
or

$$
\begin{gathered}
\text { 7(c)(i) } f(x)=\ln 3 x-3 x \\
f^{\prime}(x)=\frac{1}{x}-3 \\
x=\frac{1}{3} \Rightarrow f^{\prime}(x)=\frac{1}{\left(\frac{1}{3}\right)}-3=3-3=0 \Rightarrow \text { turning pt at } x=\frac{1}{3} . \\
f^{\prime \prime}(x)=\frac{-1}{x^{2}}<0 \text { for all } x \Rightarrow \text { local max pt at } x=\frac{1}{3} \\
x=\frac{1}{3} \Rightarrow y=\ln (3 x)-3 x=\ln (1)-3\left(\frac{1}{3}\right)=-1 \Rightarrow \text { local max is at }\left(\frac{1}{3},-1\right)
\end{gathered}
$$

(c)(ii) $f^{\prime}(x)$ has only one root.

This implies that the local max. above is the only turning point.
And $f(x)$ is continuous, so the local max pt above is an absolute max. point.
Since max pt $\left(\frac{1}{3},-1\right)$ is below x-axis, the whole graph must lie below x-axis
Thus, $f(x)=0$ has no roots, since graph does not cut the x-axis.

* Accept work showing max point to be the only turning point and below x-axis, with or without a diagram.
* No need to mention "absolute" in answer.
* No need to mention continuity

Blimders (-3)

B1 Differentiation
B2 Not testing in $f^{\prime \prime}(x)$ for max
B3 Incorrect deduction or no deduction from test
B4 Incorrect y value or no y value
B5 Factors once only.
Slips (-1)
S1 $\quad \ln 1 \neq 0$
Worthless
W1 No differentiation

Question 8

7 (a)

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{1}=2: \quad f(x)=x^{3}+x-9 \Rightarrow f(2)=(2)^{3}+2-9=1 \\
& \quad f^{\prime}(x)=3 x^{2}+1 \Rightarrow f^{\prime}(2)=3(2)^{2}+1=13 \\
& \quad x_{2}=2-\frac{1}{13}=\frac{25}{13}
\end{aligned}
$$

7 (b)

$$
\begin{aligned}
& x=3 \cos \theta-(\cos \theta)^{3} \\
& \begin{aligned}
\frac{d x}{d \theta} & =-3 \sin \theta-3(\cos \theta)^{2} \cdot(-\sin \theta) \\
& =-3 \sin \theta+3 \sin \theta \cos ^{2} \theta \\
& =-3 \sin \theta\left(1-\cos ^{2} \theta\right) \\
& =-3 \sin ^{3} \theta
\end{aligned}
\end{aligned}
$$

$$
y=3 \sin \theta-(\sin \theta)^{3}
$$

$$
\frac{d y}{d \theta}=3 \cos \theta-3(\sin \theta)^{2} \cdot \cos \theta
$$

$$
=3 \cos \theta\left(1-\sin ^{2} \theta\right)
$$

$$
=3 \cos ^{3} \theta
$$

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{3 \cos ^{3} \theta}{-3 \sin ^{3} \theta}=-\frac{1}{\left(\frac{\sin \theta}{\cos \theta}\right)^{3}} \quad=-\frac{1}{\tan ^{3} \theta}
$$

7 (c)

$$
\begin{aligned}
y & =\ln \left(\frac{3+x}{\sqrt{9-x^{2}}}\right) \\
& =\ln (3+x)-\ln \sqrt{9-x^{2}} \\
& =\ln (3+x)-\frac{1}{2} \ln \left(9-x^{2}\right) \\
\frac{d y}{d x} & =\frac{1}{3+x}-\frac{1}{2}\left[\frac{1}{9-x^{2}}(-2 x)\right] \\
& =\frac{1}{3+x}+\frac{x}{9-x^{2}} \\
& =\frac{1}{3+x}+\frac{x}{(3-x)(3+x)} \\
& =\frac{(3-x)+x}{(3-x)(3+x)}=\frac{3}{9-x^{2}}
\end{aligned}
$$

or

$$
\text { Q7(c) } \begin{aligned}
y & =\ln \frac{3+x}{\sqrt{(3-x) \cdot(3+x)}} \\
& =\ln \frac{(3+x)^{\frac{1}{2}}}{(3-x)^{\frac{1}{2}}} \\
& =\frac{1}{2} \ln (3+x)-\frac{1}{2} \ln (3-x) \\
\frac{d y}{d x} & =\frac{1}{2}\left[\frac{1}{3+x}-\frac{1}{3-x}(-1)\right] \\
& =\frac{1}{2}\left[\frac{1}{3+x}+\frac{1}{3-x}\right] \\
& =\frac{1}{2}\left[\frac{(3-x)+(3+x)}{9-x^{2}}\right]=\frac{1}{2}\left(\frac{6}{9-x^{2}}\right)=\frac{3}{9-x^{2}}
\end{aligned}
$$

Question 9

$$
\text { 7(a) } \begin{aligned}
f(x) & =x^{2} \\
f(x+h) & =(x+h)^{2} \\
f(x+h)-f(x) & =\left(x^{2}+2 h x+h^{2}\right)-x^{2} \\
f(x+h)-f(x) & =2 h x+h^{2} \\
\frac{f(x+h)-f(x)}{h} & =2 x+h \\
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =2 x
\end{aligned}
$$

or

$$
\text { 7(a) } \begin{aligned}
y & =x^{2} \\
y+\Delta y & =(x+\Delta x)^{2} \\
\Delta y & =(x+\Delta x)^{2}-x^{2} \\
& =x^{2}+2 x \Delta x+\Delta x^{2}-x^{2} \\
& =2 x \cdot \Delta x+\Delta x^{2} \\
\frac{\Delta y}{\Delta x} & =2 x+\Delta x \\
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} & =2 x
\end{aligned}
$$

7 (b) (i) | x | $=8+\ln t^{2}$ | y | $=\ln \left(2+t^{2}\right)$, |
| ---: | :--- | ---: | :--- |
| x | $=8+2 \ln t$ | $\frac{d y}{d t}$ | $=\frac{1}{2+t^{2}} \cdot 2 t$ |
| $\frac{d x}{d t}$ | $=2\left(\frac{1}{t}\right)=\frac{2}{t}$ | | $=\frac{2 t}{2+t^{2}}$ |

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\left(\frac{2 t}{2+t^{2}}\right)}{\left(\frac{2}{t}\right)}=\frac{t^{2}}{2+t^{2}}
$$

$$
\text { At } t=\sqrt{2}: \quad t^{2}=2 \quad \Rightarrow \frac{d y}{d x}=\frac{t^{2}}{2+t^{2}}=\frac{2}{2+2}=\frac{1}{2}
$$

7 (b) (ii)

$$
x y^{2}+y=6
$$

$$
\left(x .2 y \frac{d y}{d x}+y^{2}\right)+\frac{d y}{d x}=0
$$

$$
\frac{d y}{d x}(2 x y+1)=-y^{2}
$$

$$
\frac{d y}{d x}=\frac{-y^{2}}{2 x y+1}
$$

At $p(1,2) \quad x=1$ and $y=2$

$$
m=\frac{d y}{d x}=\frac{-(2)^{2}}{2(1)(2)+1}=\frac{-4}{5}
$$

7(c) (i) Roots $\pm \sqrt{k} \Rightarrow$ Equation: $x^{2}-k=0$.
7(c)(ii) Equation: $x^{2}=k$ or $x^{2}-k=0$, so let $f(x)=x^{2}-k$.

$$
\begin{aligned}
\therefore \quad & f\left(u_{n}\right)=u_{n}^{2}-k \\
& f^{\prime}\left(u_{n}\right)=2 u_{n}
\end{aligned}
$$

Newton-Raphson: $\quad u_{n+1}=u_{n}-\frac{f\left(u_{n}\right)}{f^{\prime}\left(u_{n}\right)}$
$=u_{n}-\frac{u_{n}{ }^{2}-k}{2 u_{n}}$
$=\frac{2 u_{n}{ }^{2}-\left(u_{n}{ }^{2}-k\right)}{2 u_{n}}$
$u_{n+1}=\frac{u_{n}{ }^{2}+k}{2 u_{n}}$
Hence the given rule is the Newton-Raphson method applied to $f(x)=x^{2}-k$. Thus it can be used with a suitable initial value to find increasingly accurate approximations for \sqrt{k}.

$$
\text { 7(c)(iii) } \begin{aligned}
u_{2} & =\frac{u_{1}^{2}+k}{2 u_{1}} \\
u_{2} & =\frac{\left(\frac{3}{2}\right)^{2}+3}{2\left(\frac{3}{2}\right)}=\frac{\frac{9}{4}+3}{3}=\frac{21}{12}=\frac{7}{4} \\
u_{3} & =\frac{\left(u_{2}\right)^{2}+k}{2 u_{2}}=\frac{\left(\frac{7}{4}\right)^{2}+3}{2\left(\frac{7}{4}\right)}=\frac{\frac{49}{16}+3}{\frac{7}{2}}=\frac{\left(\frac{97}{16}\right)}{\left(\frac{7}{2}\right)}=\frac{97}{56}
\end{aligned}
$$

Question 11

7 (a)

$$
\begin{aligned}
& f(x)=x^{2} \Rightarrow f(x+h)=(x+h)^{2} . \\
& \frac{d y}{d x}=\operatorname{Limit}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\operatorname{limit}_{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\operatorname{limit}_{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\operatorname{limit}_{h \rightarrow 0}(2 x+h)=2 x .
\end{aligned}
$$

7 (b) (i)

$$
\begin{aligned}
& y=\frac{\cos x+\sin x}{\cos x-\sin x} \Rightarrow \frac{d y}{d x}=\frac{(\cos x-\sin x)(-\sin x+\cos x)-(\cos x+\sin x)(-\sin x-\cos x)}{(\cos x-\sin x)^{2}} \\
& \frac{d y}{d x}=\frac{(\cos x-\sin x)^{2}+(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}=\frac{2}{(\cos x-\sin x)^{2}}
\end{aligned}
$$

7 (b) (ii)

$$
\frac{d y}{d x}=\frac{(\cos x-\sin x)^{2}+(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}=1+\frac{(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}=1+y^{2}
$$

OR

7 (b) (i) \& 7 (b) (ii)

$$
\begin{aligned}
y & =\frac{\cos x+\sin x}{\cos x-\sin x}=(\cos x+\sin x) \cdot(\cos x-\sin x)^{-1} \\
\frac{d y}{d x} & =(\cos x+\sin x)\left[-1 \cdot(\cos x-\sin x)^{-2}(-\sin x-\operatorname{cox})\right]+(\cos x-\sin x)^{-1}(-\sin x+\cos x) \\
& =\frac{(\cos x+\sin x)^{2}}{(\cos x-\sin)^{2}}+\frac{\cos x-\sin x}{\cos x-\sin x} \\
& =\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)^{2}+1 \\
& =y^{2}+1
\end{aligned}
$$

7 (c) (i)

$$
\begin{aligned}
& f(x)=(1+x) \log _{e}(1+x) \Rightarrow f^{\prime}(x)=(1+x) \cdot\left(\frac{1}{1+x}\right)+\log _{e}(1+x)=1+\log _{e}(1+x) . \\
& f^{\prime}(x)=0 \Rightarrow \log _{e}(1+x)=-1 \Rightarrow 1+x=e^{-1} . \quad \therefore x=\frac{1}{e}-1=\frac{1-e}{e} . \\
& y=\left(\frac{1}{e}\right) \log _{e}\left(\frac{1}{e}\right) \Rightarrow y=\frac{1}{e}\left(-\log _{e} e\right)=-\frac{1}{e} . \text { So turning point is }\left(\frac{1-e}{e},-\frac{1}{e}\right) .
\end{aligned}
$$

OR

7 (c) (i) $\quad f^{\prime}(x)=\left[\log _{e}(1+x)\right]+1$

$$
\text { At } \left.\begin{array}{rl}
x=\frac{1-e}{e}, & f^{\prime}(x)
\end{array}\right) \log _{e}\left(1+\frac{1-e}{e}\right)+1=\log _{e}\left(\frac{e+1-e}{e}\right)+1=\log _{e}\left(\frac{1}{e}\right)+1 .
$$

So $f^{\prime}(x)=0$ at $x=\frac{1-e}{e}$.
Also, at $x=\frac{1-e}{e}, y=\left(\frac{1}{e}\right) \log _{e}\left(\frac{1}{e}\right) \Rightarrow y=\frac{1}{e}\left(-\log _{e} e\right)=-\frac{1}{e}$.
So turning point is $\left(\frac{1-e}{e},-\frac{1}{e}\right)$.
7 (c) (ii)

$$
f^{\prime \prime}(x)=\frac{1}{1+x} \Rightarrow f^{\prime \prime}\left(\frac{1-e}{e}\right)=\frac{1}{1+\frac{1-e}{e}}=\frac{e}{1}=e>0 . \quad \therefore\left(\frac{1-e}{e},-\frac{1}{e}\right) \text { is a local minimum. }
$$

Question 12

7 (a)

$$
\begin{aligned}
& \frac{d x}{d t}=6 t-6 \quad \frac{d y}{d t}=2-2 t . \\
& \therefore \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{2-2 t}{6 t-6}=-\frac{1}{3} .
\end{aligned}
$$

7 (b) (i)

$$
\begin{aligned}
& 2 x-2 x \frac{d y}{d x}-2 y+6 y \frac{d y}{d x}+4 \frac{d y}{d x}=0 . \\
& \therefore \frac{d y}{d x}(2 x-6 y-4)=2 x-2 y \Rightarrow \frac{d y}{d x}=\frac{x-y}{x-3 y-2}
\end{aligned}
$$

(ii)

Slope of tangent at $(-3,1)=\frac{-3-1}{-3-3-2}=\frac{1}{2}$.
Slope of tangent at $(1,-3)=\frac{1+3}{1+9-2}=\frac{1}{2}$.
Equal slopes, therefore parallel tangents.

7 (c) (i)

$$
f(0)=-1<0 \text { and } f(1)=32-48+20-1=3>0 .
$$

$\therefore f$ has a root between 0 and 1 .
(ii)

$$
\begin{aligned}
& f(x)=32 x^{3}-48 x^{2}+20 x-1 \Rightarrow f^{\prime}(x)=96 x^{2}-96 x+20 . \\
& f(0.5)=1 \text { and } f^{\prime}(0.5)=-4 \\
& \quad x_{2}=0.5-\frac{1}{-4}=0.75 \\
& \therefore \\
& f(0.75)=0.5 \text { and } f^{\prime}(0.75)=2 . \\
& x_{3}=0.75-\frac{0.5}{2}=0.5 .
\end{aligned}
$$

(iii)

All further approximations will continue in the sequence $0 \cdot 5,0 \cdot 75,0.5,0 \cdot 75, \ldots$

Question 13

7 (a)

$$
f(x)=2 x+\sin 2 x \Rightarrow f^{\prime}(x)=2+2 \cos 2 x
$$

7 (b) (i)

$$
\begin{aligned}
& 5 x^{2}+5 y^{2}+6 x y=16 . \\
& \therefore 10 x+10 y \frac{d y}{d x}+6 x \frac{d y}{d x}+6 y=0 . \\
& \therefore \frac{d y}{d x}(10 y+6 x)=-10 x-6 y \Rightarrow \frac{d y}{d x}=\frac{-5 x-3 y}{3 x+5 y} .
\end{aligned}
$$

7 (b) (ii)

$$
\begin{aligned}
& m_{1}=\text { slope of tangent at }(1,1)=\frac{-5-3}{3+5}=-1 \\
& m_{2}=\text { slope of tangent at }(2,-2)=\frac{-10+6}{6-10}=1
\end{aligned}
$$

But $m_{1} m_{2}=-1, \therefore$ tangents are perpendicular to each other.

7(c) $y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) \Rightarrow \sin y=\frac{x}{\sqrt{1+x^{2}}}$

$$
\begin{aligned}
& \tan y=\frac{x}{1}=x \\
& y=\tan ^{-1} x \\
& \therefore \frac{d y}{d x}=\frac{1}{1+x^{2}}
\end{aligned}
$$

OR

Differentiation

15 marks

Att 5
5 marks

Att 2

7 (c)

$$
\begin{aligned}
& y=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}} \\
& \begin{aligned}
\sin y & = \\
\frac{x}{\sqrt{1+x^{2}}} & =\frac{x}{\left(1+x^{2}\right)^{\frac{1}{2}}} \\
\cos y \cdot \frac{d y}{d x} & =\frac{\left(1+x^{2}\right)^{\frac{1}{2}}(1)-x\left[\frac{1}{2}\left(1+x^{2}\right)^{-\frac{1}{2}} \cdot 2 x\right]}{\left(1+x^{2}\right)} \\
& =\frac{\left(1+x^{2}\right)^{\frac{1}{2}}-\frac{x^{2}}{\left(1+x^{2}\right)^{\frac{1}{2}}}}{\left(1+x^{2}\right)^{\frac{3}{2}}} \\
& =\frac{1+x^{2}-x^{2}}{\left(1+x^{2}\right)^{\frac{3}{2}}} \\
\cos y \cdot \frac{d y}{d x} & =\frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} \\
\frac{d y}{d x} & =\frac{1}{\cos y} \cdot \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} \\
& =\left(1+x^{2}\right)^{\frac{1}{2}} \cdot \frac{1}{\left(1+x^{2}\right)^{\frac{2}{2}}} \\
\frac{d y}{d x} & =\frac{1}{1+x^{2}}
\end{aligned}
\end{aligned}
$$

