CoordGeomLineH

Question 3

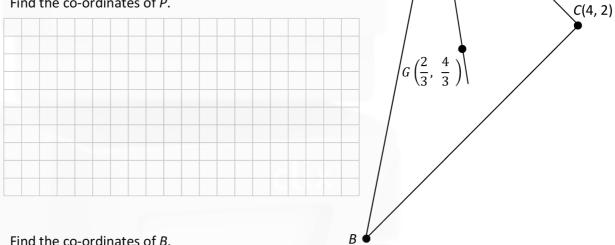
ABC is a triangle where the co-ordinates of A and C are (0, 6) and (4, 2) respectively.

 $G\left(\frac{2}{3}, \frac{4}{3}\right)$ is the centroid of the triangle ABC.

AG intersects BC at the point P.

|AG|: |GP| = 2:1.

(a) Find the co-ordinates of P.

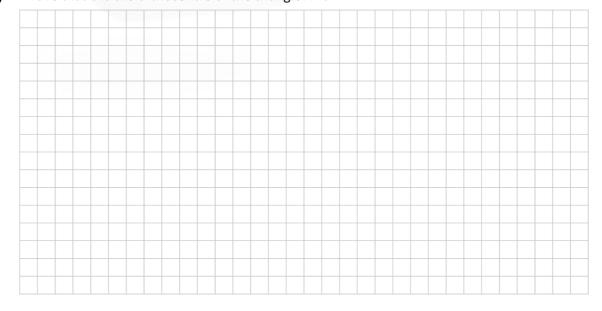


(25 marks)

A (0, 6)

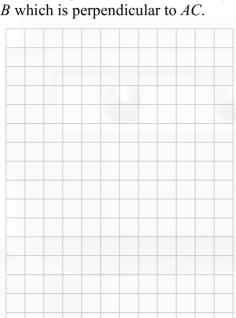
(b) Find the co-ordinates of B.

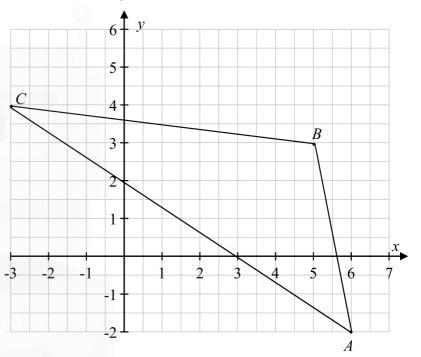
Prove that C is the orthocentre of the triangle ABC. (c)



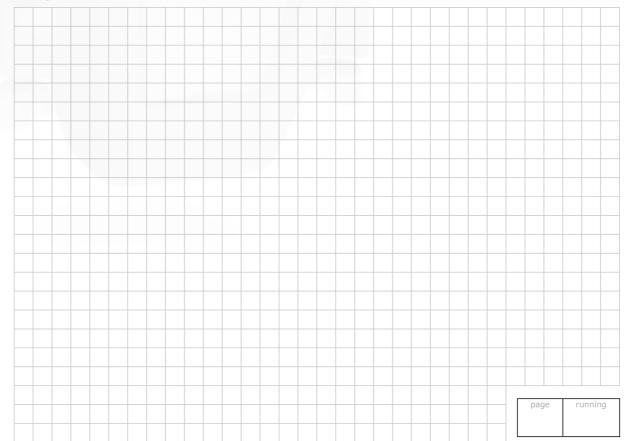
The points A(6, -2), B(5, 3) and C(-3, 4) are shown on the diagram.

(a) Find the equation of the line through B which is perpendicular to AC.



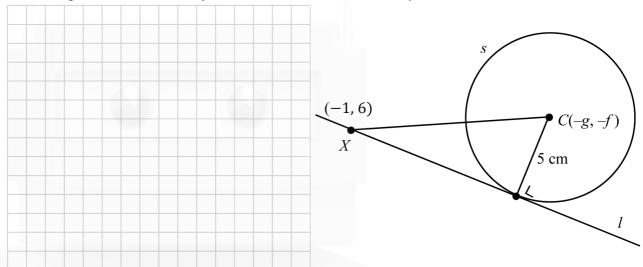


(b) Use your answer to part **(a)** above to find the co-ordinates of the orthocentre of the triangle *ABC*.



A point X has co-ordinates (-1, 6) and the slope of the line XC is $\frac{1}{7}$.

(a) Find the equation of XC. Give your answer in the form ax + by + c = 0, where $a, b, c \in \mathbb{Z}$.



(b) C is the centre of a circle s, of radius 5 cm. The line l: 3x + 4y - 21 = 0 is a tangent to s and passes through X, as shown. Find the equation of one such circle s.

(a) The co-ordinates of two points are A(4, -1) and B(7, t).

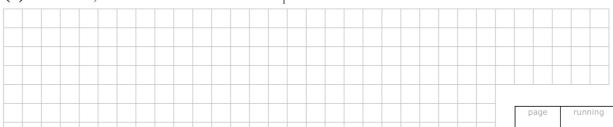
The line $l_1: 3x - 4y - 12 = 0$ is perpendicular to *AB*. Find the value of *t*.

(b) Find, in terms of k, the distance between the point P(10, k) and l_1 .

(c) P(10, k) is on a bisector of the angles between the lines l_1 and $l_2: 5x + 12y - 20 = 0$.

(i) Find the possible values of k.

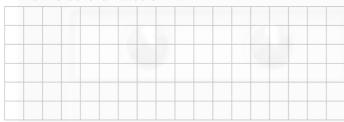
(ii) If k > 0, find the distance from P to l_1 .



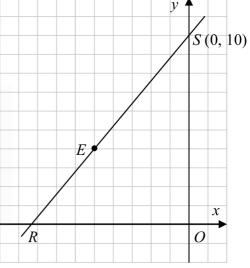
The line RS cuts the x-axis at the point R and the y-axis at the point S(0, 10), as shown. The area of the triangle ROS,

where *O* is the origin, is $\frac{125}{3}$.

(a) Find the co-ordinates of R.



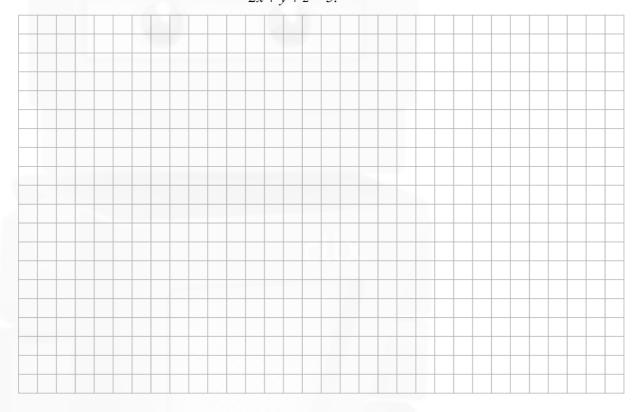
(b) Show that the point E(-5, 4) is on the line RS.



(c) A second line y = mx + c, where m and c are positive constants, passes through the point E and again makes a triangle of area $\frac{125}{3}$ with the axes. Find the value of m and the value of c.

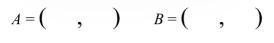
(a) Solve the simultaneous equations:

$$2x+8y-3z = -1$$
$$2x-3y+2z = 2$$
$$2x+y+z = 5.$$

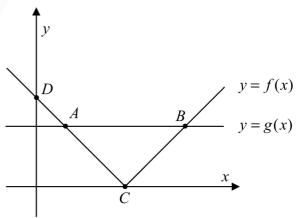


- **(b)** The graphs of the functions $f: x \mapsto |x-3|$ and $g: x \mapsto 2$ are shown in the diagram.
 - (i) Find the co-ordinates of the points A, B, C and D.





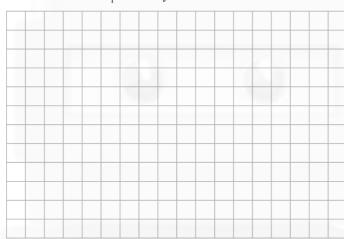
$$C = ($$
 , $)$ $D = ($, $)$

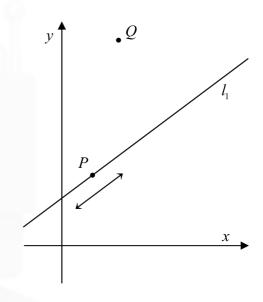


(ii) Hence, or otherwise, solve the inequality |x-3| < 2.

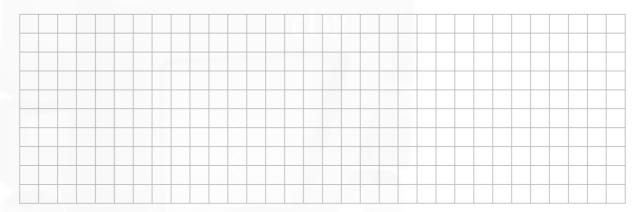


(a) Show that, for all $k \in \mathbb{R}$, the point P(4k-2, 3k+1) lies on the line $l_1: 3x-4y+10=0$.





(b) The line l_2 passes through P and is perpendicular to l_1 . Find the equation of l_2 , in terms of k.



(c) Find the value of k for which l_2 passes through the point Q(3, 11).

(d) Hence, or otherwise, find the co-ordinates of the foot of the perpendicular from Q to l_1 .



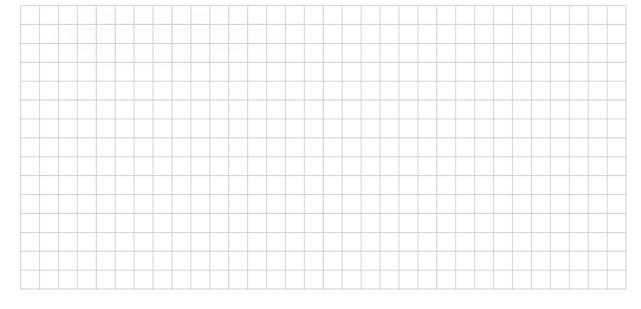
The equations of six lines are given:

Line	Equation
h	x = 3 - y
i	2x - 4y = 3
k	$y = -\frac{1}{4}(2x - 7)$
l	4x - 2y - 5 = 0
m	$x + \sqrt{3}y - 10 = 0$
n	$\sqrt{3}x + y - 10 = 0$

(a) Complete the table below by matching each description given to one or more of the lines.

Description	Line(s)
A line with a slope of 2.	
A line which intersects the <i>y</i> -axis at $(0, -2\frac{1}{2})$.	
A line which makes equal intercepts on the axes.	
A line which makes an angle of 150° with the positive sense of the <i>x</i> -axis.	
Two lines which are perpendicular to each other.	

(b) Find the acute angle between the lines m and n.



(a) Given the co-ordinates of the vertices of a quadrilateral *ABCD*, describe **three** different ways to determine, using co-ordinate geometry techniques, whether the quadrilateral is a parallelogram.

(b) Using **one** of the methods you described, determine whether the quadrilateral with vertices (-4, -2), (21, -5), (8, 7) and (-17, 10) is a parallelogram.



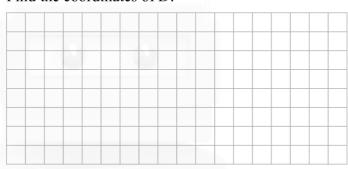
(a) Given the co-ordinates of the vertices of a quadrilateral *ABCD*, describe **three** different ways to determine, using co-ordinate geometry techniques, whether the quadrilateral is a parallelogram.

(b) Using **one** of the methods you described, determine whether the quadrilateral with vertices (-4, -2), (21, -5), (8, 7) and (-17, 10) is a parallelogram.

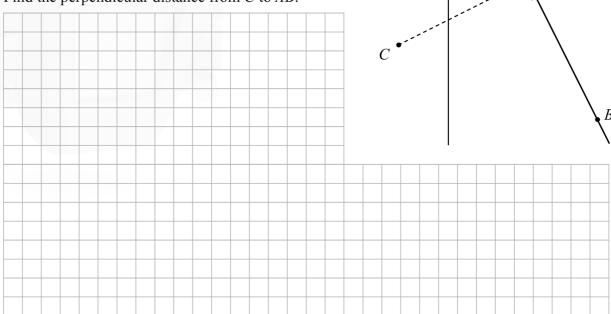
The co-ordinates of three points A, B, and C are: A(2, 2), B(6, -6), C(-2, -3). (See diagram on facing page.)

(a) Find the equation of AB.

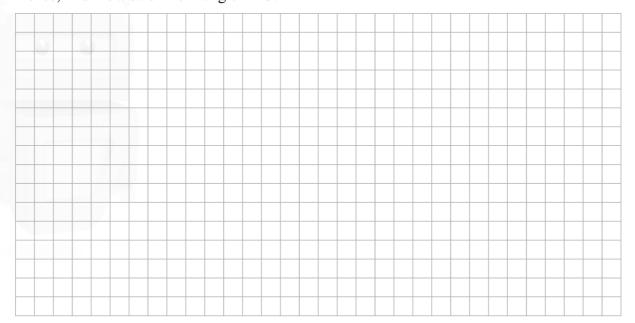
(b) The line AB intersects the y-axis at D. Find the coordinates of D.



- (c) Find the perpendicular distance from C to AB.

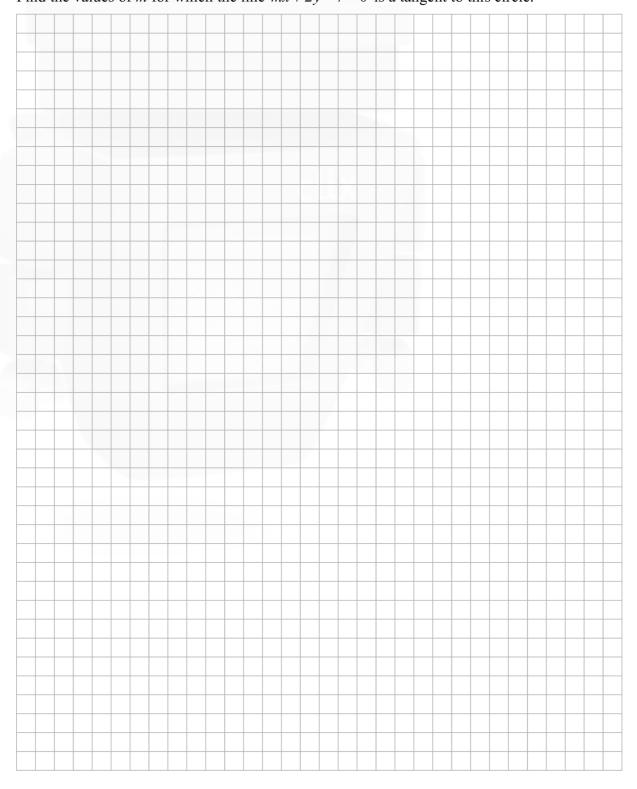


(d) Hence, find the area of the triangle ADC.

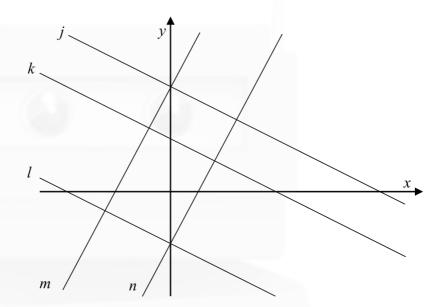


(a) Write down the equation of the circle with centre (-3, 2) and radius 4.

(b) A circle has equation $x^2 + y^2 - 2x + 4y - 15 = 0$. Find the values of m for which the line mx + 2y - 7 = 0 is a tangent to this circle.

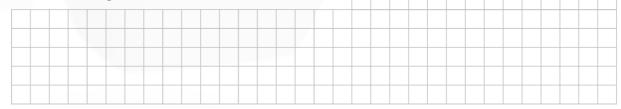


In the co-ordinate diagram shown, the lines j, k, and l are parallel, and so are the lines m and n. The equations of four of the five lines are given in the table below.



Equation	Line
x + 2y = -4	
2x - y = -4	
x + 2y = 8	
2x - y = 2	

(a) Complete the table, by matching four of the lines to their equations.



(b) Hence, insert scales on the x-axis and y-axis.

(c) Hence, find the equation of the remaining line, given that its *x*-intercept and *y*-intercept are both integers.

