ComplexNumH

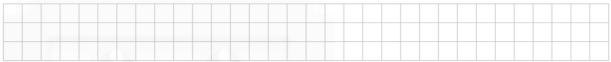
(25 marks)

 $z = -\sqrt{3} + i$, where $i^2 = -1$.

(a) Use De Moivre's Theorem to write z^4 in the form $a + b\sqrt{c} i$, where a, b, and $c \in \mathbb{Z}$.

(b) The complex number w is such that |w| = 3 and w makes an angle of 30° with the positive sense of the real axis. If t = zw, write t in its simplest form.

(a) (-4+3i) is one root of the equation $az^2 + bz + c = 0$, where $a, b, c \in \mathbb{R}$, and $i^2 = -1$. Write the other root.



(b) Use De Moivre's Theorem to express $(1 + i)^8$ in its simplest form.

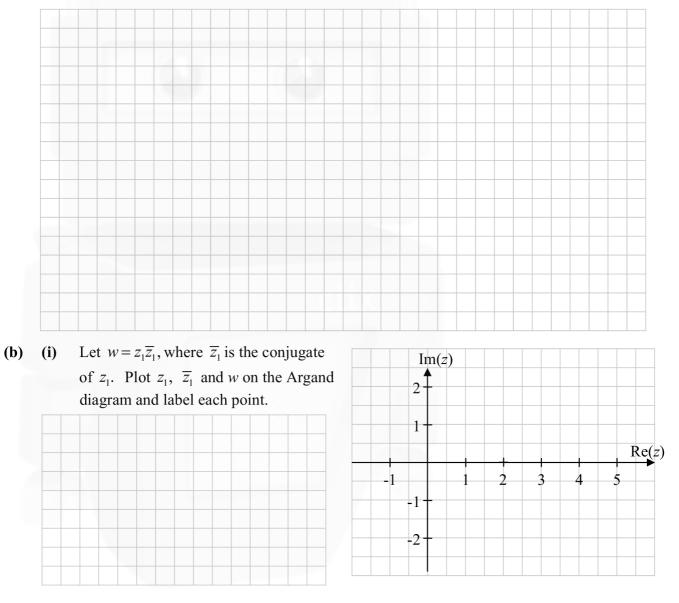
(c) (1+i) is a root of the equation $z^2 + (-2+i)z + 3 - i = 0$. Find its other root in the form m + ni, where $m, n \in \mathbb{R}$, and $i^2 = -1$.

(25 marks)

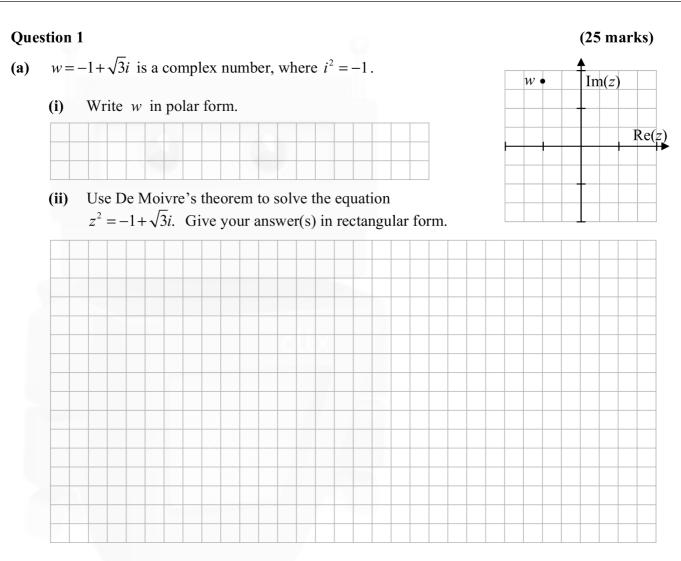
(a) The complex numbers z_1, z_2 and z_3 are such that $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$, $z_2 = 2 + 3i$ and $z_3 = 3 - 2i$, where $i^2 = -1$. Write z_1 in the form a + bi, where $a, b \in \mathbb{Z}$.

Let $z_1 = 1 - 2i$, where $i^2 = -1$.

(a) The complex number z_1 is a root of the equation $2z^3 - 7z^2 + 16z - 15 = 0$. Find the other two roots of the equation.



(ii) Find the measure of the acute angle, $\overline{z_1}wz_1$, formed by joining $\overline{z_1}$ to w to z_1 on the diagram above. Give your answer correct to the nearest degree.



(b) Four complex numbers z_1 , z_2 , z_3 and z_4 are shown on the Argand diagram. They satisfy the following conditions:

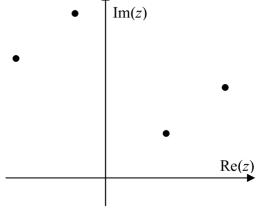
$$z_2 = iz_1$$

$$z_3 = kz_1, \text{ where } k \in \mathbb{R}$$

$$z_4 = z_2 + z_3.$$

The same scale is used on both axes.

- (i) Identify which number is which, by labelling the points on the diagram.
- (ii) Write down the approximate value of k.



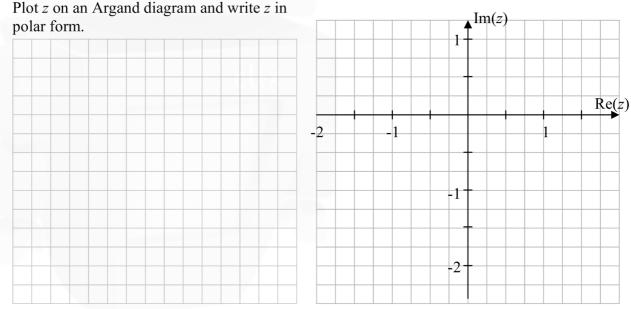
Answer: _

 $z = \frac{4}{1 + \sqrt{3}i}$ is a complex number, where $i^2 = -1$.

(a) Verify that z can be written as $1-\sqrt{3}i$.

								_							 	

Plot z on an Argand diagram and write z in **(b)** polar form.



Use De Moivre's theorem to show that $z^{10} = -2^9 (1 - \sqrt{3}i)$. (c)

(25 marks)

running

page

The complex number z has modulus $5\frac{1}{16}$ and argument $\frac{4\pi}{9}$.

(a) Find, in polar form, the four complex fourth roots of z. (That is, find the four values of w for which $w^4 = z$.)

(b) z is marked on the Argand diagram below.On the same diagram, show the four answers to part (a).

