MarkingScheme

studying is easier on studyclix.ie

calculusH

Question 1 (2017)

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$2\left(x^{2} - \frac{7}{2}x - 5\right)$ $= 2\left(\left(x - \frac{7}{4}\right)^{2} - \frac{129}{16}\right)$ $= 2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: • $a = 2$ identified explicitly or as factor Mid partial Credit: • Completed square High partial Credit: • h or k identified from work
(b)	$\left(\frac{7}{4}, \frac{-129}{8}\right)$	Scale 10B (0, 4, 10) Partial Credit: • One relevant co-ordinate identified

(c) (i)	$f(x)$ has min point as $a>0$ y co-ordinate of min <0 \Rightarrow graph must cut x -axis twice hence two real roots. or $b^2-4ac=49+80>0$ Therefore real roots	 Scale 5B (0, 3, 5) Partial Credit: Mention of a > 0 b² - 4ac Identifies location of one or two roots, e.g. between 4 and 5.
c (ii)	$2x^{2} - 7x - 10 = 0$ $2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8} = 0$ $\left(x - \frac{7}{4}\right)^{2} = \frac{129}{16}$ $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$ OR $2x^{2} - 7x - 10 = 0$ $x = \frac{7 \pm \sqrt{49 + 80}}{4}$ $= \frac{7 \pm \sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Formula with some substitution • Equation rewritten with some transpose High Partial Credit: • $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ or equivalent

(ii) Explain what is meant by the indefinite integral of a function f.

The indefinite integral of f is the general form of a function whose derivative is f.

Alternative answer: The indefinite integral of f is F(x) + C where F' = f and C is constant (the constant of integration).

(iii) Write down the indefinite integral of g, the function in part (i).

Answer:
$$\int g(x)dx = \frac{1}{4}x^4 - x^3 + 3x + C.$$

(b) (i) Let $h(x) = x \ln x$, for $x \in \mathbb{R}$, x > 0. Find h'(x).

Using the product rule we see that

$$h'(x) = (x)' \ln x + x(\ln x)'.$$

But (x)' = 1 and $(\ln x)' = \frac{1}{x}$. Therefore

$$h'(x) = (1)\ln x + x\left(\frac{1}{x}\right)$$

= $\ln x + 1$.

(ii) Hence, find $\int \ln x dx$.

We know that $h'(x) = \ln x + 1$. Also, we know that (x)' = 1. So if F(x) = h(x) - x, then

$$F'(x) = h'(x) - (x)' = \ln x + 1 - 1 = \ln x.$$

Therefore $\int \ln x \, dx = F(x) + c$. But $F(x) = h(x) - x = x \ln x - x$. Therefore

$$\int \ln x \, dx = x \ln x - x + C.$$

Type of function	Function	First derivative	Second derivative
Quadratic	k	В	I
Cubic	f	D	II
Trigonometric	g	A	III
Exponential	h	С	IV

(b) For **one** row in the table, explain your choice of first derivative and second derivative.

A quadratic function differentiates to a line which differentiates to a constant.