calculusH

Question 1 (2017)

Q1	Model Solution-25 Marks	Marking Notes
(a)	$\begin{aligned} & 2\left(x^{2}-\frac{7}{2} x-5\right) \\ = & 2\left(\left(x-\frac{7}{4}\right)^{2}-\frac{129}{16}\right) \\ = & 2\left(\left(x-\frac{7}{4}\right)^{2}\right)-\frac{129}{8} \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: - $a=2$ identified explicitly or as factor Mid partial Credit: - Completed square High partial Credit: - h or k identified from work
(b)	$\left(\frac{7}{4}, \frac{-129}{8}\right)$	Scale 10B (0, 4, 10) Partial Credit: - One relevant co-ordinate identified

(c) (i)	$f(x)$ has min point as $a>0$ y co-ordinate of $\min <0 \Rightarrow$ graph must cut x-axis twice hence two real roots. or $b^{2}-4 a c=49+80>0$ Therefore real roots	Scale 5B (0, 3, 5) Partial Credit: - Mention of $a>0$ - $b^{2}-4 a c$ - Identifies location of one or two roots, e.g. between 4 and 5 .
c (ii)	$\begin{gathered} 2 x^{2}-7 x-10=0 \\ 2\left(\left(x-\frac{7}{4}\right)^{2}\right)-\frac{129}{8}=0 \\ \left(x-\frac{7}{4}\right)^{2}=\frac{129}{16} \\ x-\frac{7}{4}= \pm \frac{\sqrt{129}}{4} \\ x=\frac{7}{4} \pm \sqrt{\frac{129}{16}} \end{gathered}$ OR $\begin{aligned} & 2 x^{2}-7 x-10=0 \\ & x= \frac{7 \pm \sqrt{49+80}}{4} \\ &=\frac{7 \pm \sqrt{129}}{4} \\ & x=\frac{7}{4} \pm \sqrt{\frac{129}{16}} \end{aligned}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - Formula with some substitution - Equation rewritten with some transpose High Partial Credit: - $x-\frac{7}{4}= \pm \frac{\sqrt{129}}{4}$ or equivalent

(ii) Explain what is meant by the indefinite integral of a function f.

The indefinite integral of f is the general form of a function whose derivative is f.
Alternative answer: The indefinite integral of f is $F(x)+C$ where $F^{\prime}=f$ and C is constant (the constant of integration).
(iii) Write down the indefinite integral of g, the function in part (i).

$$
\text { Answer: } \int g(x) d x=\frac{1}{4} x^{4}-x^{3}+3 x+C
$$

(b) (i) Let $h(x)=x \ln x$, for $x \in \mathbb{R}, x>0$.

Find $h^{\prime}(x)$.

Using the product rule we see that

$$
h^{\prime}(x)=(x)^{\prime} \ln x+x(\ln x)^{\prime} .
$$

But $(x)^{\prime}=1$ and $(\ln x)^{\prime}=\frac{1}{x}$. Therefore

$$
\begin{aligned}
h^{\prime}(x) & =(1) \ln x+x\left(\frac{1}{x}\right) \\
& =\ln x+1 .
\end{aligned}
$$

MODEL ANSWER BY

themathstutor.ie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS
(ii) Hence, find $\int \ln x d x$.

We know that $h^{\prime}(x)=\ln x+1$. Also, we know that $(x)^{\prime}=1$. So if $F(x)=h(x)-x$, then

$$
F^{\prime}(x)=h^{\prime}(x)-(x)^{\prime}=\ln x+1-1=\ln x .
$$

Therefore $\int \ln x d x=F(x)+c$. But $F(x)=h(x)-x=x \ln x-x$. Therefore

$$
\int \ln x d x=x \ln x-x+C
$$

MODEL ANSWER BY

themathstutor.ie
ONLINE SUPPORT SYSTEM FOR PROJECT MATHS

Type of function	Function	First derivative	Second derivative
Quadratic	k	B	I
Cubic	f	D	II
Trigonometric	g	A	III
Exponential	h	C	IV

(b) For one row in the table, explain your choice of first derivative and second derivative.

A quadratic function differentiates to a line which differentiates to a constant.

