MarkingScheme

AlgebraH

Question 1 (2017)

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$2\left(x^{2} - \frac{7}{2}x - 5\right)$ $= 2\left(\left(x - \frac{7}{4}\right)^{2} - \frac{129}{16}\right)$ $= 2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8}$	 Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: a = 2 identified explicitly or as factor Mid partial Credit: Completed square High partial Credit: h or k identified from work
(b)	$\left(\frac{7}{4}, \frac{-129}{8}\right)$	Scale 10B (0, 4, 10) Partial Credit: One relevant co-ordinate identified

(c) (i)	$f(x)$ has min point as $a>0$ y co-ordinate of min <0 \Rightarrow graph must cut x -axis twice hence two real roots. or $b^2-4ac=49+80>0$ Therefore real roots	Scale 5B (0, 3, 5) Partial Credit: • Mention of $a > 0$ • $b^2 - 4ac$ • Identifies location of one or two roots, e.g. between 4 and 5.
c (ii)	$2x^{2} - 7x - 10 = 0$ $2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8} = 0$ $\left(x - \frac{7}{4}\right)^{2} = \frac{129}{16}$ $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$ OR $2x^{2} - 7x - 10 = 0$ $x = \frac{7 \pm \sqrt{49 + 80}}{4}$ $= \frac{7 \pm \sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Formula with some substitution • Equation rewritten with some transpose High Partial Credit: • $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ or equivalent

(a) $f(x) = 2x^{3} + 5x^{2} - 4x - 3$ $f(-3) = 2(-3)^{3} + 5(-3)^{2} - 4(-3)$ -3 = -54 + 45 + 12 - 3 f(-3) = 0 $\Rightarrow (x+3) \text{ is a factor}$ $\frac{2x^{2} - x - 1}{x+3\sqrt{2}x^{3} + 5x^{2} - 4x - 3}$ $\frac{2x^{3} + 6x^{2}}{-x^{2} - 4x}$ $-x^{2} - 3x$ -x - 3 $\frac{-x - 3}{-x - 3}$ $f(x) = (x+3)(2x^{2} - x - 1)$ f(x) = (x+3)(2x+1)(x-1) x = -3(b)

Scale 15C (0, 5, 10, 15)

Low Partial Credit:

• Shows f(-3) = 0

High Partial Credit:

• quadratic factor of f(x) found

Note:

No remainder in division may be stated as reason for x = -3 as root

$y = 2x^{3} + 5x^{2} - 4x - 3$ $\frac{dy}{dx} = 6x^{2} + 10x - 4 = 0$ $3x^{2} + 5x - 2 = 0$ (x + 2)(3x - 1) = 0 $3x - 1 = 0 \quad x + 2 = 0$ $x = \frac{1}{3} \quad x = -2$ $f\left(\frac{1}{3}\right) = \frac{-100}{27} \quad f(-2) = 9$ $Max = (-2,9) \quad Min = \left(\frac{1}{3}, \frac{-100}{27}\right)$

Scale 5C (0, 3, 4, 5)

Low Partial Credit:

• $\frac{dy}{dx}$ found (Some correct differentiation)

High Partial Credit

• roots and one y value found

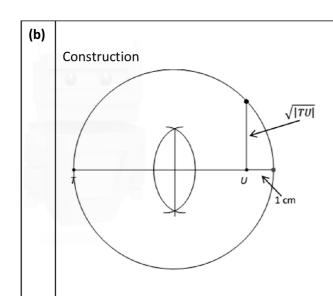
Note:

One of Max/Min must be identified for full credit

(c)
$$a > \frac{100}{27}$$
 or $a < -9$ Scale 5B (0, 3, 5) Partial Credit:

- one value identified
- no range identified (from 2 values)

Q4	Model Solution – 25 Marks	Marking Notes	
(a)			
(i)	$ \angle ABD = \angle CBD = 90^{\circ}(i)$ $ \angle BDC + \angle BCD = 90^{\circ}angles in triangle$ $sum to 180^{\circ}$ $ \angle ADB + \angle BDC = 90^{\circ} angle in$ $semicircle$ $ \angle ADB + \angle BDC = \angle BDC + \angle BCD $ $ \angle ADB = \angle BCD (ii)$ $\therefore Triangles are equiangular (or similar)$ or	 Scale 15C (0, 5, 10, 15) Low Partial Credit identifies one angle of same size in each triangle High Partial Credit identifies second angle of same size in each triangle implies triangles are similar without justifying (ii) in model solution or equivalent 	
	$ \angle ABD = \angle CBD = 90^{\circ}$ (i) $ \angle DAB = \angle DAC $ same angle $\Rightarrow \angle ADB $ $= \angle DCA $ (reasons as above) which is also $\angle DCB$ (ii)		
(a) (ii)	$\frac{y}{1} = \frac{x}{y}$ $\Rightarrow y^2 = x$ $y = \sqrt{x}$ or $ AD ^2 + DC ^2 = AC ^2$ $ AD = \sqrt{x^2 + y^2}$ $ DC = \sqrt{y^2 + 1}$ $x^2 + y^2 + y^2 + 1 = (x + 1)^2$ $2y^2 = 2x$ $y = \sqrt{x}$ Or $\frac{\sqrt{x^2 + y^2}}{\sqrt{y^2 + 1}} = \frac{y}{1} \Rightarrow x^2 + y^2 = y^2(y^2 + 1)$ $y^4 = x^2 \Rightarrow y^2 = x \Rightarrow y = \sqrt{x}$	Scale 5C (0, 2, 4, 5) Low Partial Credit one set of corresponding sides identified indicates relevant use of Pythagoras High Partial Credit corresponding sides fully substituted expression in y² or y⁴, i.e. fails to finish	



Scale 5C (0, 2, 4, 5)

Low Partial Credit

- perpendicular line drawn at *U* or *T*
- relevant use of 1 cm length
- mid point of incorrect extended segment constructed

High Partial Credit

• correct mid-point constructed

Q2	Model Solution – 25 Marks	Marking Notes
(a)	$x^{2} - 8x + 16 \ge 4$ $x^{2} - 8x + 12 \ge 0$ $(x - 2)(x - 6) \ge 0$ $x = 2 x = 6$	Scale 10C (0, 3, 7, 10) Low Partial Credit: either side squared one correct linear inequality written stating range of natural numbers only
	$\{x x \le 2\} \cup \{x x \ge 6\}$ Or	High Partial Credit: • correct solutions to quadratic
	$x-4 \ge 2 \ \cup x-4 \le -2$	Full Credit:correct answer without workNote: use of natural numbers in range merits
	$x \ge 6 \ \cup x \le 2$ Or Graphical method (must indicate range on X-axis somehow)	High Partial Credit at most
	2 6 Or	Or
	y = x - 4 $y = x - 4 $	Scale 10C (0, 3, 7, 10) Low Partial Credit: • any one straight line High Partial Credit: • three straight lines
	1 2 3 4 5 6 7 8 $x \le 2 \cup x \ge 6$	

(b) $x = \frac{-3y - 1}{2}$ $\left(\frac{-3y - 1}{2}\right)^{2} + \left(\frac{-3y - 1}{2}\right)(y) + 2y^{2} = 4$ $11y^{2} + 4y - 15 = 0$ (11y + 15)(y - 1) = 0 $y = \frac{-15}{11} \text{ or } y = 1$ $x = \frac{-3\left(\frac{-15}{11}\right) - 1}{2} \text{ or } x = \frac{-3(1) - 1}{2}$ $x = \frac{17}{11} \text{ or } x = -2$ $y = \frac{-2x - 1}{3}$ $x^{2} + x\left(\frac{-2x - 1}{3}\right) + 2\left(\frac{-2x - 1}{3}\right)^{2} = 4$ $11x^{2} + 5x - 34 = 0$ (11x - 17)(x + 2) = 0 $x = \frac{17}{11} \text{ or } x = -2$ $y = \frac{-15}{11} \text{ or } y = 1$

Scale 15C (0, 5, 10,15) Low Partial Credit:

• effort to isolate x (or y)

High Partial Credit:

• fully correct substitution into quadratic

Question 5 (2016)

Q3	Model Solution – 25 Marks					Marking Notes	
(a) (i)			0.5	4	1m(4)	Scale 5C (0, 2, 4, 5)	
()	X	0	0.5	1	ln(4)	Low Partial Credit	
	$f(x) = \frac{2}{e^x}$	2	1.21	0.74	0.5	one entry correct	
	$g(x) = e^x - 1$	0	0.65	1.72	3	High Partial Credit5 entries correct	
(ii)	3		/	g(x)		Scale 5C (0, 2, 4, 5) Low Partial Credit • one plot correct High Partial Credit	
	1	X		f(x)		 5 plots correct one correct graph no labelling Notes: straight lines <u>NOT</u> acceptable one clear label merits full credit one ambiguous label merits High Partial Credit at most 	
(iii)	f(x):	=g(x)	1 x) when	$x \approx 0.7$		Scale 5B (0, 2, 5) Partial Credit • point of intersection clearly indicated on graph, but value of x not stated	

Q3	Model Solution – Continued	Marking Notes
(b)	ſ Y	
	$\frac{e^x-1}{1}=\frac{2}{e^x}$	Scale 10C (0, 3, 7, 10)
	1 0	Low Partial Credit
	$e^{2x} - e^x = 2$	substitution correct
	$(e^x)^2 - e^x - 2 = 0$	
	$(e^x - 2)(e^x + 1) = 0$	High Partial Credit
	$e^x = 2$ or $e^x = -1$	correct factors of quadratic
	$x = \ln 2$	root formula correctly substituted
	or $x = 0.693$	$e^x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$
	elly	2(1)
	COLA	
		Note: oversimplification of equation (i.e. not treating as quadratic) merits Low Partial
		Credit at most
	Or	Create de mose
		Or
	$(e^x)^2 - e^x - 2 = 0$	
	Let $y = e^x \implies y^2 - y - 2 = 0$	Scale 10C (0, 3, 7, 10)
	$-(-1) + \sqrt{(-1)^2 - 4(1)(-2)}$	Low Partial Credit
	$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$	substitution correct
		High Partial Credit
	$=\frac{1\pm\sqrt{1+8}}{2}$	root formula correctly substituted
	$=\frac{1\pm 3}{2}$	$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$
	<u> </u>	
	\Rightarrow y = 2 or y = -1 (not possible)	Note: oversimplification of equation (i.e. not
	$y = e^x \Rightarrow e^x = 2$	treating as quadratic) merits Low Partial
	$x = \ln 2$ or $x = 0.693$	Credit at most

Question 6 (2016)

Q5	Model Solution – 25 Marks	Marking Notes
(a) (i)	$(5x - 9)^{2} = (x - 1)^{2} + (4x)^{2}$ $8x^{2} - 88x + 80 = 0$ $x^{2} - 11x + 10 = 0$ $(x - 1)(x - 10) = 0$ $x = 1 \text{ or } x = 10$ $x = 10$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit • any use of Pythagoras Mid Partial Credit • fully correct substitution High Partial Credit • both roots correct
(a) (ii)	Sides=9, 40, 41 $9^2 + 40^2 = 41^2$ 81 + 1600 = 1681 1681 = 1681	Scale 5B (0, 2, 5) Partial Credit • 9 or 40 or 41 • using 1 or -10 from candidates work

(b) (i)	200 m Race: $y = a(b-x)^{c}$ $y = 4.99087(42.5 - 23.8)^{1.81}$ $y = 1000$ Javelin: $y = a(x-b)^{c}$ $y = 15.9803(58.2 - 3.8)^{1.04}$ $y = 1020$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit • some relevant substitution into one formula Mid Partial Credit • one value of y found • some relevant substitution into both formulas High Partial Credit • one value correct and some relevant substitution into second formula • uses incorrect formula (once only)
(ii)	$y = a(x - b)^{c}$ $1295 = 15.9803(x - 3.8)^{1.04}$ $81.0373 = (x - 3.8)^{1.04} = z^{1.04}$ $\log z = \frac{\log 81.0373}{1.04}$ $z = 68.4343 = (x - 3.8)$ $x = 72.2343 = 72.23 \text{ m}$	Scale 5B (0, 2, 5) Partial Credit • some relevant substitution into formula
(iii)	$y = a(b - x)^{c}$ $1087 = 0.11193(254 - 121.84)^{c}$ $\frac{1087}{0.11193} = (132.16)^{c}$ $\log 9711.426 = c \log 132.16$ $c = \frac{\log 9711.426}{\log 132.16} = 1.88$	Scale 10C (0, 3, 7, 10) Low Partial Credit • some relevant substitution into formula High Partial Credit • fully correct substitution into formula

(b) (i)	G_{5} =Female,Male,Female,Female,Male	Scale 5B (0, 2, 5) Partial Credit one correct entry
(b) (ii)	$G_6 = G_5 + G_4 = 5 + 3 = 8$ $G_7 = G_6 + G_5 = 8 + 5 = 13$	Scale 10C (0, 3, 7, 10) Low Partial Credit • $G_6 = G_5 + G_4$ • $G_7 = G_6 + G_5$ • G_7 or G_6 correct • 8 and/or 13 without work High Partial Credit • correct substitution in both
(b) (iii)	$G_{3} = \frac{(1+\sqrt{5})^{3} - (1-\sqrt{5})^{3}}{2^{3}\sqrt{5}} = 2$ $(1+\sqrt{5})^{3} = \left(1+3\sqrt{5}+3\sqrt{5}^{2}+\sqrt{5}^{3}\right)$ $= 16+8\sqrt{5}$ $(1-\sqrt{5})^{3} = \left(1-3\sqrt{5}+3\sqrt{5}^{2}-\sqrt{5}^{3}\right)$ $= 16-8\sqrt{5}$ $G_{3} = \frac{6\sqrt{5}+2\sqrt{5}^{3}}{8\sqrt{5}}$ $= \frac{6+2\sqrt{5}^{2}}{8} = \frac{16}{8} = 2 \text{Q. E. D.}$	Scale 5B (0, 2, 5) Partial Credit • some correct substitution • using approximate value for $\sqrt{5}$ • $G_3 = 2$ • some effort at cubing Note: use of $\sqrt{5}$ as approximation, even if rounded off to 2 at end of work merits at most Partial Credit

Question 9 (2015)

Question 2 (25 marks)

$$f(x) = x^{3} - 3x^{2} - 9x + 11$$

$$f(1) = 1^{3} - 3(1)^{2} - 9 + 11 = 0$$

$$\Rightarrow x = 1 \text{ is a solution.}$$

$$(x - 1) \text{ is a factor}$$

$$\begin{array}{r}
x^{2} - 2x - 11 \\
\underline{x^{3} - 3x^{2} - 9x + 11} \\
\underline{x^{3} - x^{2}} \\
\underline{-2x^{2} - 9x + 11} \\
\underline{-2x^{2} + 2x} \\
\underline{-11x + 11} \\
\underline{-11x + 11}
\end{array}$$

$$(x-1)(x^{2} + Ax - 11) = x^{3} - 3x^{2} - 9x + 11$$

$$\Rightarrow x^{3} + Ax^{2} - x - x^{2} - Ax + 1 = x^{3} - 3x^{2} - 9x + 11$$

$$\Rightarrow A - 1 = -3$$

$$\Rightarrow A = -2$$

or

Hence, other factor is $x^2 - 2x - 11$

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} = \frac{2 \pm \sqrt{48}}{2} = \frac{2 \pm 4\sqrt{3}}{2} = 1 \pm 2\sqrt{3}$$

Solutions: $\{1, 1 + 2\sqrt{3}, 1 - 2\sqrt{3}\}$

Question 10 (2015)

$$x = \sqrt{x+6}$$

$$\Rightarrow x^2 = x+6$$

$$\Rightarrow x^2 - x - 6 = 0$$

$$\Rightarrow (x+2)(x-3) = 0$$

$$\Rightarrow x = -2, \quad x = 3$$

$$x = -2: \quad -2 \neq \sqrt{-2+6} = \sqrt{4} = 2 \quad \times$$

$$x = 3: \quad 3 = \sqrt{3+6} = \sqrt{9} = 3 \quad \checkmark$$

(a) Show that -k is a root of f.

Substituting -k for x we obtain

$$f(-k) = (-k)^3 + (1 - k^2)(-k) + k$$

= $-k^3 - k + k^3 + k$
= 0

Therefore -k is a root of f.

(b) Find, in terms of k, the other two roots of f.

Since -k is a root of f we know, by the Factor Theorem, that (x+k) is a factor of f(x). Now we carry out long division to find the other factor.

So

$$x^{3} + (1 - k^{2})x + k = (x + k)(x^{2} - kx + 1).$$

Therefore the other two roots of f are solutions of the equation

$$x^2 - kx + 1 = 0$$
.

Using the quadratic formula we get

$$x = \frac{k \pm \sqrt{k^2 - 4}}{2}.$$

So the other two roots of f are

$$\frac{k+\sqrt{k^2-4}}{2} \text{ and } \frac{k-\sqrt{k^2-4}}{2}.$$

(c) Find the set of values of k for which f has exactly one real root.

From the solution to part (b), we see that f has exactly one real root if and only if $k^2 - 4 < 0$. This is equivalent to $k^2 < 4$ or

$$-2 < k < 2$$

We can subtract the second equation from the first:

$$2x+8y-3z = -1$$

$$2x-3y+2z = 2$$

$$11y-5z = -3$$

Similarly, we subtract the third equation from the first:

$$2x+8y-3z = -1$$

$$2x+y+z = 5$$

$$7y-4z = -6$$

Now we solve the simultaneous equations

$$11y - 5z = -3$$
$$7y - 4z = -6$$

Multiply the first by 7, the second by 11 and subtract:

$$77y - 35z = -21$$

$$77y - 44z = -66$$

$$9z = 45$$

Therefore $z = \frac{45}{9} = 5$. Now substitute z = 5 into 7y - 4z = -6 to get 7y - 4(5) = -6 or 7y = -6 + 20 = 14 Therefore y = 2.

Finally substitute y = 2 and z = 5 into 2x + 8y - 3z = -1 to get 2x + 8(2) - 3(5) = -1 or 2x = -1 - 8(2) + 3(5) = -2 So x = -1.

So the solution is

$$x = -1, y = 2, z = 5.$$

Now we can check this by substituting into the original equations and verifying that they are all true:

$$2(-1) + 8(2) - 3(5) = -1$$

 $2(-1) - 3(2) + 2(5) = 2$
 $2(-1) + (2) + (5) = 5$.

- (b) The graphs of the functions $f: x \mapsto |x-3|$ and $g: x \mapsto 2$ are shown in the diagram.
 - (i) Find the co-ordinates of the points A, B, C and D.

D is on the *y*-axis, so its *x*-co-ordinate is 0. Now f(0) = |0 - 3| = |-3| = 3. So D = (0,3).

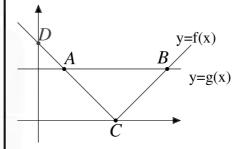
C = (0) (on the x-axis), so we solve |x-3| = 0 to find the x-co-ordinate. Now $|x-3| = 0 \Leftrightarrow x-3 = 0 \Leftrightarrow x = 3$. So C = (3,0).

A and B both have y-co-ordinate 2, so we solve |x-3|=2. Now $|x-3|=2 \Leftrightarrow \pm (x-3)=2$. So either

$$(x-3) = 2$$
 or $-(x-3) = 2$.

In the first case x = 5 and in the second case -x+3=2 or x = 1. So A = (1,2) and B = (5,2).

$$A = (1,2)$$
 $B = (5,2)$
 $C = (3,0)$ $D = (0,3)$

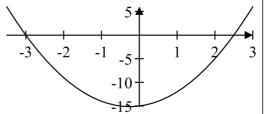


(ii) Hence, or otherwise, solve the inequality |x-3| < 2.

The solution set of the inequality corresponds to the values of x for which the graph of f is below the graph of g. From the diagram and calculations above, we see that the solution set is

$$2x^{2} + x - 15 = 0$$

$$\Rightarrow (2x - 5)(x + 3) = 0 \Rightarrow x = 2\frac{1}{2} \text{ or } x = -3$$



 $2x^2 + x - 15 \ge 0$ for $\{x \mid x \le -3\} \cup \{x \mid x \ge 2\frac{1}{2}\}$

OR

$$f(x) = 2x^{2} + x - 15 = (2x - 5)(x + 3)$$
$$(2x - 5)(x + 3) = 0$$
$$\Rightarrow x = \frac{5}{2} \text{ or } x = -3$$

(i):
$$x \ge -3$$
 and $x \ge \frac{5}{2} \Rightarrow x \ge \frac{5}{2}$

(ii):
$$x \le -3$$
 and $x \le \frac{5}{2} \Rightarrow x \le -3$

Solution Set: $\left\{x \mid x \le -3\right\} \cup \left\{x \mid x \ge \frac{5}{2}\right\}$

$$\begin{array}{c}
 x + y + z = 16 \\
 \frac{5}{2}x + y + 10z = 40
 \end{array}
 \Rightarrow
 \begin{array}{c}
 2x + 2y + 2z = 32 \\
 5x + 2y + 20z = 80 \\
 \hline
 3x + 18z = 48
 \end{array}$$

$$x + y + z = 16$$

$$4x + y + 8z = 42$$

$$3x + 7z = 26$$

$$3x + 18z = 48$$

$$3x + 7z = 26$$

$$11z = 22 \implies z = 2$$

$$3x + 7z = 26 \Rightarrow 3x + 7(2) = 26 \Rightarrow 3x = 12 \Rightarrow x = 4$$

$$x + y + z = 16 \Rightarrow 4 + y + 2 = 16 \Rightarrow y = 10$$

(a) If the ticket price was €18, how many people would be expected to attend?

$$12000 + (20 - 18)1000 = 14000$$

(b) Let x be the ticket price, where $x \le 20$. Write down, in terms of x, the expected attendance at such an event.

$$12000 + (20 - x)1000 = 32000 - 1000x$$

(c) Write down a function f that gives the expected income from the sale of tickets for such an event.

$$f(x) = (32000 - 1000x)x$$

(d) Find the price at which tickets should be sold to give the maximum expected income.

$$f(x) = (32000 - 1000x)x$$

$$f'(x) = 32000 - 2000x = 0 \Rightarrow x = \text{\textsterling}16$$

(e) Find this maximum expected income.

$$f(x) = (32000 - 1000x)x$$

$$f(16) = (32000 - 16000)16 = \text{€}256\,000$$

(f) Suppose that tickets are instead priced at a value that is expected to give a full attendance at the stadium. Find the difference between the income from the sale of tickets at this price and the maximum income calculated at (e) above.

$$32000 - 1000x = 25000 \Rightarrow 1000x = 7000 \Rightarrow x = 7$$

$$f(x) = (32000 - 1000x)x \Rightarrow f(7) = (32000 - 7000)7 = 175000$$
Difference: $£256000 - £175000 = £81000$

(g) The stadium was full for a recent special event. Two types of tickets were sold; a single ticket for €16 and a family ticket (2 adults and 2 children) for a certain amount. The income from this event was €365 000. If 1000 more family tickets had been sold the income from the event would have been reduces by €14000. How many family tickets were sold?

Single ticket: €16; Family ticket
$$\notin y$$

Number of single tickets: p ; Number of family tickets: $\frac{25000-p}{4}$
 $16p + \frac{25000-p}{4}y = 365000$
 $16(p-4000) + (\frac{25000-p}{4} + 1000)y = 351000 \Rightarrow 16p + \frac{29000-p}{4}y = 415000$
 $\frac{29000-p}{4}y - \frac{25000-p}{4}y = 50000 \Rightarrow 4000y = 200000 \Rightarrow y = 50$
 $16p + \frac{25000-p}{4}50 = 365000 \Rightarrow 7p = 105000 \Rightarrow p = 15000$
Number of family tickets: $\frac{25000-p}{4} = \frac{25000-15000}{4} = 2500$

$$x =$$
 number of single tickets
 $f =$ number of family tickets
 $y =$ cost of family ticket

$$x+4f = 25000$$

$$16x + fy = 365000$$

$$16(x-4000) + (f+1000)y = 351000$$

$$a = -2b - 1$$

$$(-2b-1)^{2} + (2b+1)b+b^{2} = 3$$

$$7b^{2} + 5b - 2 = 0$$

$$(7b-2)(b+1) = 0$$

$$b = \frac{2}{7} \quad \text{or } b = -1$$

$$a = \frac{-11}{7} \quad \text{or } a = 1$$

Solution: $\{b = \frac{2}{7} \text{ and } a = \frac{-11}{7}\}$ or $\{b = -1 \text{ and } a = 1\}$.

(b) Find the set of all real values of x for which $\frac{2x-5}{x-3} \le \frac{5}{2}$.

Multiply across by $2(x-3)^2$, which is non-negative:

$$2(x-3)(2x-5) \le 5(x-3)^2$$

$$4x^2 - 22x + 30 \le 5x^2 - 30x + 45$$

$$0 \le x^2 - 8x + 15$$

$$0 \le (x-5)(x-3)$$

$$x \ge 5$$
 or $x < 3$.

 $x \ge 5$ or x < 3.

OR

$\frac{2x-5}{x-3} - \frac{5}{2} \le 0$
$\frac{2(2x-5)-5(x-3)}{2(x-3)} \le 0$
$\frac{-x+5}{2(x-3)} \le 0$

	x < 3	3 < x < 5	<i>x</i> > 5
-x+5	+	+	_
x-3	_	+	+
$\frac{-x+5}{2(x-3)}$	_	+	_

Question 16 (2012)