
Question 1

- A point X has co-ordinates (-1, 6) and the slope of the line XC is $\frac{1}{7}$.
- (a) Find the equation of XC. Give your answer in the form ax + by + c = 0, where $a, b, c \in \mathbb{Z}$.

studying is easier on studyClix.com.au

(b) C is the centre of a circle s, of radius 5 cm. The line l: 3x + 4y - 21 = 0 is a tangent to s and passes through X, as shown. Find the equation of one such circle s.

Question 2

Question 4

The centre of a circle lies on the line x + 2y - 6 = 0. The *x*-axis and the *y*-axis are tangents to the circle. There are two circles that satisfy these conditions. Find their equations.

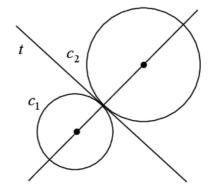
-	 			 			 _	 		_	 		 	 _	_	 		 -	_	
							 _	 		_	 			 				 		
	 		 				 -	 		-	 _	_		 _		 	 	 -	_	
-	 			 			 _	 		_	 		 	 _	_	 		 -	_	
							 _	 		_	 			 				 		
		_		 		_		 			 _	_		 _		 		 -	_	
	 		 	 			 _	 		_	 		 	 _	_	 		 _	_	
							_	 		_				 _				_	_	
-							 _			_		_		_		 		-	_	
-							_			_					_			_	_	
	 		 				 _	 		-	 			 _	_	 	 	 -	_	
							 _	 		_	 			 	_	 		 _	_	
					_											 		-		
	 	_		 			 -	 _		-	 _			 _	-	 		 -	-	
				 			 _	 		_	 		 	 		 		 _		
-							 _			_					_			_	_	
<u> </u>							_			_								_		
																		-		
\vdash							_			_					_			-		
							 _			_				 		 		-		
-										_					_			_		
							_			_										
																 		-		
\vdash							_			_					_			-	_	

Question 3

Question 4

- (25 marks)
- (a) Write down the equation of the circle with centre (-3, 2) and radius 4.

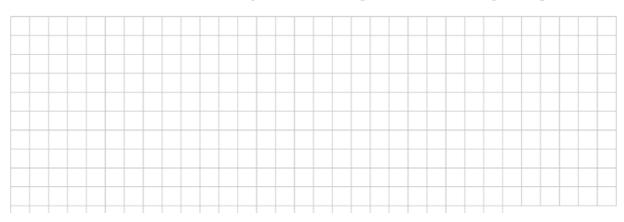
(b) A circle has equation $x^2 + y^2 - 2x + 4y - 15 = 0$. Find the values of *m* for which the line mx + 2y - 7 = 0 is a tangent to this circle.


											-		-0-						
	-		 	-		 	-	 	-	 	 		 	_	 _	 	 -		-
		 				 		 	-	 	 	-	 		 	 			-
										 	 		 		 			 	-
	_						_		-						 				-
									_						 				-
											 		 	_	 				-
															 				-
<u> </u>						 	-	 	-	 	 		 	_	 	 			-
											 		 		 				-
									-						 				-
											 		 		 	 			-
																			-
																			-
																			-
	-								-		 								-
																			Ĺ

(25 marks)

Question 4 Question 4

The circles c_1 and c_2 touch externally as shown.


(a) Complete the following table:

Circle	Centre	Radius	Equation
<i>c</i> ₁	(-3, -2)	2	
<i>c</i> ₂			$x^2 + y^2 - 2x - 2y - 7 = 0$

(b) (i) Find the co-ordinates of the point of contact of c_1 and c_2 .

(ii) Hence, or otherwise, find the equation of the tangent, t, common to c_1 and c_2 .

