ROUND 1 - 6 Minutes

Marks may be lost for omission of correct units

Q1 A car has entered the M1 on the Dublin to Belfast road at a speed of $\frac{\mathbf{1 0}}{\mathbf{3}} \mathbf{m ~ s}^{\mathbf{- 1}}$, and begins to accelerate at $5 \mathbf{m ~ s}^{\mathbf{- 2}}$. How many seconds will elapse before the driver exceeds the speed limit of 120 kilometres per hour?

Q2 Two straight roads cross at right angles. Niamh is walking eastwards towards the intersection at $\mathbf{3} \mathbf{m ~ s}^{\mathbf{- 1}}$. Cormac is walking northwards towards the intersection at $\boldsymbol{u} \mathbf{m ~ s}^{\mathbf{- 1}}$. The velocity of Niamh relative to that of Cormac is in the direction East $\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{\mathbf{4}}{\mathbf{3}}\right)$ South. Find the value of \boldsymbol{u}.

Q3 Only One of the following numbers is a prime number. Which number is it?
A: 2013
B: 2015
C: 2017
D: 2019

ROUND 2-6 Minutes

Marks may be lost for omission of correct units

Q1 A ball was thrown vertically upwards at a speed of $20 \mathbf{m ~ s}^{\mathbf{- 1}}$. What distance did the ball travel in the first $\mathbf{3}$ seconds? [Use $\boldsymbol{g}=\mathbf{1 0} \mathbf{~ m ~ s}^{\mathbf{- 2}}$]

Q2 A particle \boldsymbol{A} has an initial position vector of $\overrightarrow{\boldsymbol{r}}_{\boldsymbol{A}}=(\mathbf{3 0 0} \overrightarrow{\boldsymbol{\imath}}-\mathbf{2 0 0} \overrightarrow{\boldsymbol{\jmath}}) \mathbf{m}$ and moves with a constant velocity of $\overrightarrow{\boldsymbol{v}}_{\boldsymbol{A}}=(\mathbf{8} \overrightarrow{\boldsymbol{\imath}}-\mathbf{5} \overrightarrow{\boldsymbol{\jmath}}) \mathbf{m} \mathbf{~ s}^{\mathbf{- 1}}$. A second particle \boldsymbol{B} has an initial position vector $\overrightarrow{\boldsymbol{r}}_{\boldsymbol{B}}=(\mathbf{1 2 4} \overrightarrow{\boldsymbol{\imath}}-\mathbf{5 0 8} \overrightarrow{\boldsymbol{\jmath}}) \mathbf{m}$ and moves with a constant velocity $\overrightarrow{\boldsymbol{v}}_{\boldsymbol{B}}=(\boldsymbol{x} \overrightarrow{\boldsymbol{\imath}}+\boldsymbol{y} \overrightarrow{\boldsymbol{\jmath}}) \mathbf{\mathbf { m ~ s } ^ { \mathbf { - 1 } }}$. The two particles collide after 11 seconds. Find the values of \boldsymbol{x} and \boldsymbol{y}.

Q3 One light-year is nearly $\mathbf{6} \times \mathbf{1 0}^{\mathbf{1 2}}$ miles. In 2016, the Hubble Space Telescope set a new cosmic record, observing a galaxy $13 \cdot \mathbf{4}$ billion years in the past, just 400 million years after the Big Bang. Calculate the distance in kilometres. [1 kilometre $=\mathbf{0} \cdot \mathbf{6 2}$ miles]
A: $\mathbf{1} \cdot \mathbf{3} \times \mathbf{1 0}^{23}$
B: $\mathbf{5} \times \mathbf{1 0}^{\mathbf{2 2}}$
C $\mathbf{8} \cdot \mathbf{0 4} \times \mathbf{1 0}^{22}$
D $5 \times \mathbf{1 0}^{\mathbf{2 3}}$
E 4.9×10^{23}

Marks may be lost for omission of correct units

Q1 A ball is projected with an initial velocity of $\overrightarrow{\boldsymbol{u}}=(\mathbf{1 2 \vec { \imath }}+\mathbf{1 6} \overrightarrow{\boldsymbol{\jmath}}) \mathbf{m ~ s}^{\mathbf{- 1}}$ from a point on the horizontal floor of a gymnasium. At what angle to the horizontal is the ball travelling after one second? Give your answer to the nearest degree. [Use $\boldsymbol{g}=\mathbf{1 0} \mathbf{m ~ s}^{\mathbf{- 2}}$].

Q2 A particle is projected from a point \boldsymbol{P} on horizontal ground. Its initial velocity is $(x \overrightarrow{\boldsymbol{\imath}}+\mathbf{3 0} \overrightarrow{\boldsymbol{\jmath}}) \mathbf{m ~ s}^{\mathbf{- 1}}$. It falls $\mathbf{5}$ metres short of its target which is $\mathbf{1 2 5}$ metres from P along the horizontal. Calculate the value of \boldsymbol{x}. [Use $\boldsymbol{g}=\mathbf{1 0} \mathbf{m ~ s}^{\mathbf{- 2}}$]

Q3
In 1959, Edsger Dijkstra, a Dutch pioneer of computer programming drew up a set of rules to solve the shortest path problem. For example, if an airline wants to connect cities in the most efficient way. You do not need to know the rules to try this:
A boy cycles to school at \boldsymbol{G} from his home at \boldsymbol{A}. The numbers represent metres in hundreds (not to scale). If he chooses the shortest path, what is the shortest distance he can cycle to reach the school? Give your answer in kilometres.

Marks may be lost for omission of correct units

Q1 A sumo wrestler and has a mass of 140 kilogrammes. When he stands in a lift which is accelerating upwards his apparent weight increases by 210 Newton's.
Calculate the acceleration of the lift. [Use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$]

Q2 A ball of mass $\mathbf{0} \cdot \mathbf{1} \mathbf{k g}$ strikes a wall horizontally and rebounds along the same path. It has a strike velocity of $\mathbf{2 0} \mathbf{m ~ s}^{\mathbf{1}}$ and rebounds at $\mathbf{1 0} \mathbf{m ~ s}^{\mathbf{- 1}}$. The magnitude of its impulse to loss in kinetic energy is in the ratio $1: x$. Find the value of \boldsymbol{x}.

Q3 A shop sells goods at a profit of $\mathbf{2 0 \%}$ on the selling price. What is the percentage profit on the cost price?

2018 REGIONAL APPLIED MATHS QUIZ - 5th MARCH 2018

ROUND 5-6 Minutes

Marks may be lost for omission of correct units

Q1 A particle of mass $\boldsymbol{m} \mathbf{~ k g}$ rests on a smooth horizontal table. It is connected by a light inextensible string which passes over a smooth, light fixed pulley at the edge of the table to a particle of mass $\mathbf{8} \mathbf{~ k g}$ which hangs freely under gravity. The system starts from rest and the $\mathbf{8} \mathbf{~ k g}$ moves vertically downwards.
If the force exerted by the string on the pulley is $48 \sqrt{2} \mathrm{~N}$, calculate the value of m.
[Use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$].

Q2 A smooth sphere \boldsymbol{P}, of mass $\mathbf{4} \mathbf{~ k g}$, moving with speed $\boldsymbol{u} \mathbf{m ~ s}^{\mathbf{- 1}}$, collides directly with a smooth sphere \boldsymbol{Q}, of mass $\mathbf{2} \mathbf{~ k g}$, which is moving in the same direction with speed $\mathbf{2} \mathbf{~ m ~ s}{ }^{\mathbf{- 1}}$. The coefficient of restitution for the collision is $\frac{\mathbf{1}}{\mathbf{3}}$.
After the collision the movement of both spheres continues in the same direction as before, and \boldsymbol{Q} has a speed of $\mathbf{3} \mathbf{m ~ s}^{\mathbf{- 1}}$. Find the value of \boldsymbol{u}.

Q3 The five integers $2,5,6,9,14$ are arranged into a different order. In the new arrangement, the sum of the first three integers is equal to the sum of the last three integers. What is the middle number in the new arrangement?
A: 2
B: 5
C: 6
D: 9
E: 14

2018 REGIONAL APPLIED MATHS QUIZ - 5th MARCH 2018
 ROUND 6 - 8 Minutes

Marks may be lost for omission of correct units

Q1 At a particular instant a car of mass $\mathbf{7 0 0} \mathbf{~ k g}$ is pulling a trailer of mass $\mathbf{1 0 0} \mathbf{~ k g}$, on a level road at a speed of $\mathbf{1 0} \mathbf{m ~ s}^{\mathbf{- 1}}$ when the engine exerts a constant power of $\mathbf{3 0} \mathbf{~ k W}$. Friction and air resistance amount to $\mathbf{5 0 0} \mathbf{N}$ on the car and $\mathbf{1 0 0} \mathbf{N}$ on the trailer. Calculate the tension in the tow-bar which can be modelled as a uniform non-extensible string.

Q2 A wedge rests on a smooth horizontal table with one of its smooth plane faces inclined at 45° to the horizontal. A particle of mass 2 kg is allowed slide down that smooth face.
Calculate the horizontal force \boldsymbol{F} that must be applied to the wedge in order to prevent its movement. [Use $\boldsymbol{g}=\mathbf{1 0} \mathrm{m} \mathrm{s}^{\mathbf{- 2}}$].

Q3 The following is a report from The Farmers News.
On 12 October 2017, on a one acre field in Co. Donegal, 1 - 6 inches of rain fell over twenty four hours. How many cubic metres was that volume of rainfall? Give your answer to the nearest whole number.

1 Hectare $=10000 \mathrm{~m}^{2}=2 \cdot 471$ acres
1 metre $=39 \cdot 4$ inches

ROUND 7 - 8 Minutes

Marks may be lost for omission of correct units

Q1 Two identical spheres, \boldsymbol{A} and \boldsymbol{B}, each of mass $\boldsymbol{m} \mathbf{~ k g}$ and both are moving in perpendicular directions with speed $\boldsymbol{u} \mathbf{m ~ s}^{\mathbf{- 1}}$ collide obliquely as shown.
The coefficient of restitution for the collision is $\mathbf{0} \cdot \mathbf{5}$. Find, in terms of \boldsymbol{u}, the speed of \boldsymbol{A} after the collision. Assume the collision takes place along the $\overrightarrow{\boldsymbol{l}}$ axis.

Q2 A ball is projected horizontally from a point \boldsymbol{K} above a horizontal plane with a speed of $\mathbf{2} \mathbf{m ~ s}^{\mathbf{- 1}}$. The ball first hits the plane at a point whose horizontal displacement from \boldsymbol{K} is $\mathbf{2} \mathbf{~ m}$. The coefficient of restitution between the ball and the plane is $\mathbf{0} \cdot \mathbf{2}$.
Find the speed with which the ball bounces. [Use $\boldsymbol{g}=\mathbf{1 0} \mathbf{m ~ s}^{\mathbf{- 2}}$]

Q3 An isosceles triangle has a base of length \boldsymbol{a} and perpendicular height \boldsymbol{h}. The length of \boldsymbol{a} is decreased by 10%, and the length of \boldsymbol{h} is increased by 10%.
What is the percentage change in the area of the triangle?
A. 1% increase
B. 1% decrease
C. No change
D. 10% increase
E. 10% decrease

2018 REGIONAL APPLIED MATHS QUIZ - 5th MARCH 2018
 ROUND 8 - 8 Minutes

Marks may be lost for omission of correct units

Q1 A particle is projected from a point \boldsymbol{O} up an inclined plane which is inclined at an angle β to the horizontal. At the same time a second particle is projected from a point \boldsymbol{P} down the plane. Both particles are projected at a speed of $\mathbf{1 2 \cdot 5 ~ m ~ s}{ }^{\mathbf{- 1}}$ and at an angle $\boldsymbol{\alpha}$ to the inclined plane. If the particles meet after $\mathbf{4}$ seconds and the distance from \boldsymbol{O} to \boldsymbol{P} is 50 m . Find the value of $\boldsymbol{\alpha}$.

Q2 Andrew is jogging eastwards at $\mathbf{4} \mathbf{m ~ s}^{\mathbf{- 1}}$. Barry is jogging at $\mathbf{5} \mathbf{m ~ s}^{\mathbf{- 1}}$ in a direction East $\boldsymbol{\theta}^{\circ}$ North. At an instant the faster jogger is \boldsymbol{d} metres north of his fellow jogger and this in fact is the shortest distance between them in their subsequent movement. Find the speed of Barry relative to Andrew.

Q3 What is the next letter in the sequence? (Hint: can you count?)

Q1 A metal block of mass 100 kg sits on a horizontal metal floor. The coefficient of limiting friction between the concrete and the metal is $\mathbf{0} \cdot \mathbf{5}$. What frictional force is being applied do the block?

Q2 A space shuttle uses a $\mathbf{3 0}$ second thrust of its manoeuvring thrusters to reduce its forward velocity from $\mathbf{1 5 ~ m ~ s} \mathbf{~ s}^{-1}$ to $12 \mathbf{~ m ~ s}^{-1}$. Given that the mass of the vessel is $\mathbf{4 5 0 0 0} \mathbf{~ k g}$, what is the magnitude of the constant force produced by the firing of the thrusters?

A vehicle travels at a constant speed of $\mathbf{3 0} \mathbf{~ m ~ s}^{\mathbf{- 1}}$. The resistances to motion at this speed amounts to 1000 N . Calculate the power developed.

AWARD $\underline{2}$ MARKS FOR A CORRECT SOLUTION

[Deduct a maximum of 1 mark for rounding errors and/or incorrect Units]

Round 1
Q1 $6 \mathbf{s}$
Q2 $\quad u=\mathbf{4} \mathbf{m ~ s}^{\mathbf{- 1}}$
Q3 $\quad \mathbf{C}=\mathbf{2 0 1 7}$
Round 2
Q1 $\quad \mathbf{2 5} \mathbf{~ m}$
Q2 $\quad \vec{v}_{\boldsymbol{B}}=\mathbf{2 4} \vec{\imath}+\mathbf{2 3} \vec{\jmath}$
Q3 $\quad \mathrm{A}: \mathbf{1} \cdot \mathbf{3} \times \mathbf{1 0}^{\mathbf{2 3}}$
[Unit required for 2 marks - award 1 mark for $24 \cdot 9 \mathrm{~m}$] [No unit required- award 1 marks for $x=24$ or $y=23$] [No unit required]

Round 3

Q1 $\quad \mathbf{2 7}^{\circ}$
Q2 $\boldsymbol{x}=\mathbf{2 0}$
Q3 $\quad \mathbf{1} \cdot \mathbf{2} \mathbf{k m}$

Round 4

Q1 $\quad \mathbf{1} \cdot \mathbf{5} \mathbf{m ~ s}^{-2}$
Q2 $\quad \boldsymbol{x}=\mathbf{5}$
Q3 25\%
Round 5
Q1 $\quad \boldsymbol{m}=\mathbf{1 2} \mathbf{~ k g}$
Q2 $\quad u=\mathbf{3} \cdot \mathbf{1 2 5} \mathbf{m ~ s}^{\mathbf{- 1}}$
Q3 E: 14

Round 6

Q1 $\quad \boldsymbol{T}=\mathbf{4 0 0} \mathrm{N}$
Q2 $\quad \boldsymbol{F}=\mathbf{1 0} \mathbf{N}$
Q3 $\quad \mathbf{1 6 4} \mathbf{m}^{3}$
Round 7
Q1 $\quad \mathbf{1} \cdot \mathbf{2 5 u} \mathbf{~ m ~ s}^{\mathbf{- 1}}$
Q2 $\quad|\vec{v}|=\sqrt{\mathbf{8}} \mathrm{m} \mathrm{s}^{\mathbf{- 1}}$
Q3 B: $\mathbf{1} \%$ decrease
[No unit required]
[No unit required]
[No unit required]
[No unit required - award 1 mark for $\tan ^{-1}\left(\frac{1}{2}\right)$]
[No unit required - award 1 mark for $2 g$ or 19•6]
[No unit required - award 1 mark for 12 or 1200]
[Unit required for 2 marks]
[No unit required]
[No unit required]
[No unit required- award 1 marks for $m=12 \cdot 6 \mathrm{~kg}$]
[No unit required]
[No unit required]
[Unit required for 2 marks]
[Unit required for 2 marks - award 1 mark for $g \mathrm{~N}$ or 9•8] [No unit required]
[Unit required for 2 marks]
[Unit required for 2 marks- award 1 mark for $\vec{v}=2 \vec{\imath}+2 \vec{\jmath} \mathbf{m ~ s}^{\mathbf{- 1}}$]
[No unit required]

Round 8
$\begin{array}{ll}\text { Q1 } & \boldsymbol{\alpha}=\mathbf{6 0} \\ \text { Q2 } & \left|\overrightarrow{\boldsymbol{v}}_{\boldsymbol{B A}}\right|=\mathbf{1} \mathbf{m ~ s}^{\mathbf{- 1}}\end{array}$
[No unit required]
[Unit required for 2 marks - if unit is omitted award 1 mark]
Q3 E [No unit required]

TIE BREAKER

Q1	$\mathbf{0 ~ N}$	[No unit required]
Q2	$\mathbf{4 5 0 0} \mathbf{~ N}$	[No unit required]
Q3	$\mathbf{3 0 0 0 0} \mathbf{~ W}$	[No unit required]

