ROUND ONE

1. A car is travelling along a straight line with a uniform acceleration. It covers 120 m in 20 s and then 300 m in the next 28 s . Calculate the initial speed of the car, to one decimal place.
2. The Atwood Machine was invented in 1784 by Rev. George Atwood [England] to verify the mechanical laws of motion. A simple version could be constructed as follows:

A fixed smooth pulley has masses of 7 kg and 3 kg hanging freely from each side by means of a light inextensible string as shown in the diagram. The system is released from rest. Find the time taken for the 3 kg mass to rise 1 m . Give your answer in seconds correct to one place of decimal.

3. Consider these statements:

One: $\quad a+b+c=x$
Two: $a \times b \times c=x$
Find the value of x if each of a, b and c is a positive integer less than 10.

ROUND TWO

1. Two runners are running in a race along a straight road which heads north. At a certain instant, athlete P is d metres from the finishing line and is running with a constant speed of $7 \mathrm{~m} / \mathrm{s}$. At this instant athlete Q is 8 metres behind P and is running with a constant speed of $9 \mathrm{~m} / \mathrm{s} . Q$ just catches P on the finishing line, and the race ends in a dead heat. Find the value of d.
2. A smooth sphere P, of mass m, and moving with a speed $6 \mathrm{~m} / \mathrm{s}$ collides directly with another smooth sphere Q, of equal mass m, moving in the same direction with speed $2 \mathrm{~m} / \mathrm{s}$ on a smooth horizontal table. After the collision both spheres P and Q keep moving in the same direction, with speeds in the following ratio:

Speed of $P:$ Speed of $Q=3: 5$
Find the coefficient of restitution for the collision.
3. According to a headline, 'Glaciers in the French Alps have lost a quarter of their area in the past 40 years'. What is the approximate percentage reduction in the length of a side of a square when it loses on quarter of its area, thereby becoming a smaller square?
A: 13%
B: 25%
C: 38%
D: 50\%
C: 65%

ROUND THREE

1. A ball thrown with a speed of $35 \mathrm{~m} / \mathrm{s}$ at an angle α to the horizontal reaches a maximum height of 40 m . Find the horizontal range of the particle. Give your answer correct to the nearest metre. $\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
2. A train accelerates uniformly from rest to a speed $v \mathrm{~m} / \mathrm{s}$ with uniform acceleration $a \mathrm{~m} / \mathrm{s}^{2}$. It then decelerates uniformly to rest with uniform retardation $3 a \mathrm{~m} / \mathrm{s}^{2}$. The total distance travelled is s metres. If the average speed for the whole journey is $\sqrt{\frac{s}{2}} \mathrm{~m} / \mathrm{s}$, find the value of a. Give your answer as a fraction.
3. The square $A B C D$ has an area of 196. It contains two overlapping squares; the larger of these squares has an area 4 times that of the smaller and the area of their overlap is 1 . What is the total area of the shaded regions?
A: 44
B: 72
C: 80
D: 152

E: more information is needed

ROUND FOUR

1. Two cars A and B are moving along straight roads which are at right angles to each other, with uniform velocities $3 \mathrm{~m} / \mathrm{s}$ and $6 \mathrm{~m} / \mathrm{s}$, respectively. When A is at the crossroads, B is 80 m away. Calculate the time interval for which the distance between the cars is not greater than 70 m . Give your answer correct to the nearest second.
2. A particle is projected up an inclined plane with initial speed u. The line of projection makes an angle α with the plane and the plane is inclined at 60° to the horizontal. The plane of projection is vertical and contains the line of greatest slope. If the direction of motion of the particle makes an angle of $\tan ^{-1} 3$ with the plane when it lands, find the value of α. Give your answer in degrees correct to one place of decimals. $\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
3. There are four clocks in a room A, B, C and D.
A gains a minute every hour.
B loses a minute every hour.
C runs backwards at the normal speed.
D always keeps the correct time.
At 07:03 today they all show the same time which was correct.
After how many days will they all again show the correct time?

ROUND FIVE

1. A particle A of mass 6 kg is connected by a light inextensible string passing over a fixed smooth pulley to a light smooth moveable pulley B. Two particles C and D of masses 2 kg and 1 kg are connected by a light inextensible string passing over the pulley B. When the system is moving freely, find the downwards acceleration of A.
$\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
Give your answer correct to two places of decimals

2. A smooth sphere of mass 1 kg moving with velocity $3 \vec{i}+\vec{j}$ collides with a smooth sphere of mass M moving with velocity $\vec{i}+2 \vec{j}$ on a smooth horizontal table.

After the collision the spheres move in parallel directions.
The coefficient of restitution between the spheres is $\frac{1}{2}$.
Find the value of M.
3. In a 'ninety nine' shop, all items cost a number of euros and 99 cents. Susanna spent $€ 65.76$. How many items did she buy?
A: 23
B: 24
C: 25
D: 60
E: 76

ROUND SIX

1. A speedboat is travelling due East at $100 \mathrm{~km} /$ hour and at an instant is 500 m due North of a launch which is trying to catch the speedboat. If the maximum speed of the launch is $60 \mathrm{~km} /$ hour calculate, to the nearest metre, how close it can get to the speedboat.
2. A particle of mass 8 kg lies on a rough plane which is inclined at 30° to the horizontal.

The coefficient of friction between the particle and the plane is $\frac{1}{\sqrt{3}}$. The 8 kg mass is connected by a light inextensible string passing over a smooth light pulley at the top of the plane to a pulley of mass 2 kg hanging freely. Over this pulley (which is also smooth) a second light inextensible string is passed having particles of mass 3 kg and 5 kg attached. Find the acceleration of the 8 kg mass. Give your answer as a fraction. $\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
3. A team wins 60% of its games in the first third of a season. What percentage of the remaining games must it win to finish the season having won 80% of the games?

TIE-BREAKERS

1. Particle A of mass 4 kg rests on a fixed smooth plane inclined at an angle θ where $\theta=\sin ^{-1}\left(\frac{3}{20}\right)$.

Particle B of mass 6 kg is hanging freely. A and B are connected by a light inextensible string passing over a smooth pulley P.

Find the acceleration of the system.

2. A smooth sphere A of mass 5 kg which is travelling with speed u collides directly with a stationery sphere B of mass 2 kg . The coefficient of restitution between the spheres is e.

Find, in terms of u, the maximum possible velocity of sphere A after the collision.

ANSWERS

	Question 1	Question 2	Question 3
Round 1	$5 \cdot 8 \mathrm{~m} / \mathrm{s}$	0.7 seconds	6
Round 2	28 m	$\frac{1}{2}$	A
Round 3	117 m	$\frac{4}{3}$	B
Round 4	18 seconds	$14 \cdot 8^{\circ}$	60 days
Round 5	$3 \cdot 85 \mathrm{~m} / \mathrm{s}^{2}$	2 kg	B
Round 6	400 m	$\frac{6}{7}$	90%
Tie-Breakers	$5.4 \mathrm{~m} / \mathrm{s}^{2}$	$\frac{5 u}{7}$	

