Applied Mathematics

Marking Scheme

Ordinary

Higher

Pg. 2

Pg. 21

Pre-Leaving Certificate Examination, 2011

Applied Mathematics

Ordinary Level
 Marking Scheme (300 marks)

General Instructions

1. Penalties of three types are applied to students' work as follows:

Slips	- numerical slips	$\mathrm{S}(-1)$
Blunders	- mathematical errors	$\mathrm{B}(-3)$
Misreading	- if not serious	$\mathrm{M}(-1)$

Serious blunder or omission or misreading which oversimplifies:

- award the attempt mark only.

Attempt marks are awarded as follows: 5 (Att. 2), 10 (Att. 3)
2. Mark all answers, including excess answers and repeated answers whether cancelled or not, and award the marks for the best answers.
3. Mark scripts in red unless a student uses red. If a student uses red, mark the script in blue or black.
4. Number the grid on each script 1 to 9 in numerical order, not the order of answering.
5. Scrutinise all pages of the answer book.
6. The marking scheme shows one correct solution to each question. In many cases there are other equally valid methods.

Six questions to be answered. All questions carry equal marks. $(\mathbf{6} \times \mathbf{5 0 m})$

1. A car travels along a straight level road.

It starts from rest at a point P and accelerates uniformly for 20 seconds to a speed of $40 \mathrm{~ms}^{-1}$.
It then moves at a constant speed of $40 \mathrm{~ms}^{-1}$ for 30 seconds.
Finally the car decelerates uniformly from $40 \mathrm{~ms}^{-1}$ to rest at Q in k seconds.
The distance from P to Q is $2,200 \mathrm{~m}$.
(i) Draw a speed-time graph of the motion of the car from P to Q.

(ii) Find the uniform acceleration of the car.

$$
\begin{array}{rlll}
v & & & u+a t \\
& u_{1} & & \\
& v_{1} & & 0 \\
t_{1} & & 40 \\
& & & 20 \\
\Rightarrow \quad 40 & & & =0+a(20) \tag{5~m}\\
\Rightarrow \quad a_{1} & & & \frac{40}{20} \\
& & & \\
& & & 2 \mathrm{~m} / \mathrm{s}
\end{array}
$$

(iii) Find the distance travelled while the car is accelerating.

$$
\begin{array}{rll}
s & & =u t+1 / 2 a t^{2} \\
& u_{1} & \\
& = & 0 \\
a_{1} & & =20 \\
t_{1} & & \\
\Rightarrow s_{1} & & \\
& & \tag{5~m}\\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}
$$

1(iv) Find the distance travelled while the car is decelerating.

$$
\begin{align*}
s_{3}(\text { area } 3) & =\text { Total distance }- \text { area } 1+\text { area } 2 \tag{5~m}\\
& =2,200-\frac{1}{2}(20)(40)+(30)(40) \tag{5~m}\\
& =2,200-400+1,200 \\
& =600 \mathrm{~m} \tag{5~m}
\end{align*}
$$

or

$$
\begin{aligned}
& =\left(\frac{u+v}{2}\right) t \\
& =0 \\
u_{1} & = \\
v_{1} & =40 \\
t_{1} & =20 \\
t_{2} & =30
\end{aligned}
$$

Distance accelerating

$$
\begin{aligned}
s_{1} & =\left(\frac{0+40}{2}\right)(20) \\
& =\frac{1}{2}(40)(20) \\
& =400 \mathrm{~m}
\end{aligned}
$$

Distance at constant speed

$$
\begin{aligned}
s_{2} & =\left(\frac{40+40}{2}\right)(30) \\
& =(40)(30) \\
& =1,200 \mathrm{~m}
\end{aligned}
$$

Distance decelerating

$$
\begin{align*}
d(\text { total distance }) & =s_{1}+s_{2}+s_{3} \\
\Rightarrow \quad & =d-s_{1}-s_{2} \tag{5~m}\\
& =2,200-\frac{1}{2}(40)(20)-(40)(30) \tag{5~m}\\
& =2,200-400-1,200 \\
& =600 \mathrm{~m} \tag{5~m}
\end{align*}
$$

1(v) Find the value of k.

$$
\begin{array}{rlrl}
s_{3} & & = & \text { area } 3 \\
& & =600 \tag{5~m}\\
u_{3} & & =40 \\
t_{3} & & k \\
\Rightarrow \quad 40 k & & 600 \\
\Rightarrow \quad k & & \frac{600}{40} \\
& & & 15 \mathrm{~s}
\end{array}
$$

or

$$
\begin{align*}
& v^{2} \quad=\quad u^{2}+2 a s \\
& u_{3} \quad=\quad 40 \\
& \nu_{3} \quad=\quad 0 \\
& s_{3} \quad=\quad 600 \\
& \Rightarrow \quad 0 \quad=\quad(40)^{2}+2 a(600) \\
& \Rightarrow \quad 1,200 a \quad=\quad-1,600 \\
& \Rightarrow \quad a \quad-\frac{1,600}{1,200} \\
& =-\frac{4}{3} \\
& v \quad=\quad u+a t \\
& u_{3} \quad=\quad 40 \\
& v_{3} \quad=0 \\
& a_{3} \quad=\quad-\frac{4}{3} \\
& \Rightarrow 0 \quad=40-\frac{4}{3} k \tag{5~m}\\
& \Rightarrow \quad \frac{4}{3} k \quad=40 \\
& \Rightarrow \quad k \quad=\frac{(40)(3)}{4} \\
& =30 \mathrm{~s} \tag{5~m}
\end{align*}
$$

2. A river is 48 m wide and is flowing with a speed of $1.2 \mathrm{~ms}^{-1}$ parallel to the straight banks.

The speed of a boat in still water is $2 \mathrm{~ms}^{-1}$.
(i) Find the total time it takes the boat to travel up river (against the flow) for 800 m and then back the same distance (with the flow).

$$
\begin{align*}
& t_{\text {up river }} \quad=\quad \frac{d}{v_{\text {boat }}-v_{\text {river }}} \\
& t_{\text {down river }} \quad=\quad \frac{d}{v_{\text {boat }}+v_{\text {river }}} \\
& d \quad=800 \\
& v_{\text {boat }}=2 \\
& v_{\text {river }}=1.2 \\
& \Rightarrow \quad t_{\text {total }} \quad=\frac{800}{2.0-1.2}+\frac{800}{2.0+1.2} \tag{10m}\\
& =\frac{800}{0.8}+\frac{800}{3.2} \\
& =1,000+250 \\
& =1,250 \mathrm{~s} \tag{10~m}
\end{align*}
$$

(ii) How long does it take the boat to cross the river by the shortest path?

(iii) What is the shortest time it takes the boat to cross the river?

$$
\begin{align*}
t \quad & =\frac{d}{v_{\text {boat }}} \\
& =\frac{48}{2} \tag{10m}\\
& =24 \mathrm{~s}
\end{align*}
$$

3. A straight vertical cliff is 500 m high.

A particle is fired horizontally directly out to sea from the top of the cliff with an initial speed of $200 \mathrm{~ms}^{-1}$.
(i) Find the distance from the foot of the cliff that the particle strikes the sea.

$$
\begin{align*}
& s_{y} \quad=\quad u_{y} t+1 / 2 a_{y} t^{2} \\
& s_{y} \quad=\quad-500 \\
& u_{y} \quad=\quad 0 \\
& a_{y} \quad=\quad g \\
& =-10 \\
& \Rightarrow \quad-500 \quad=\quad 0(t)+\frac{1}{2}(-10) t^{2} \tag{10}\\
& \Rightarrow-500 \quad=\quad-5 t^{2} \\
& \Rightarrow 5 t^{2} \quad=500 \\
& \Rightarrow t^{2} \quad=100 \\
& \Rightarrow t \quad=10 \mathrm{~s} \tag{5~m}\\
& s_{x} \quad=\quad u_{x} t \\
& u_{x} \quad=\quad 200 \\
& t=10 \\
& \Rightarrow s_{x} \quad=\quad 200(10) \tag{10~m}\\
& =\quad 2,000 \mathrm{~m} \tag{5~m}
\end{align*}
$$

A second particle is fired horizontally directly out to sea with an initial speed of $v \mathrm{~ms}^{-1}$ from a point 80 m above the foot of the cliff. This particle strikes the sea at the same point as the first particle.
(ii) Find the value of v.

$$
\begin{align*}
& s_{y} \quad=\quad u_{y} t+1 / 2 a_{y} t^{2} \\
& s_{y} \quad=\quad-80 \\
& u_{y} \quad=\quad 0 \\
& a_{y} \quad=\quad g \\
& =-10 \\
& \Rightarrow \quad-80 \\
& =0(t)+\frac{1}{2}(-10) t^{2} \tag{5~m}\\
& \Rightarrow-80 \quad=\quad-5 t^{2} \\
& \Rightarrow 5 t^{2} \quad=\quad 80 \\
& \Rightarrow t^{2} \quad=16 \\
& \Rightarrow t \quad=\quad 4 \mathrm{~s} \\
& s_{x} \quad=\quad u_{x} t \\
& s_{x} \quad=2,000 \\
& t \quad=\quad 4 \\
& \Rightarrow 2,000 \quad=\quad v(4) \tag{5~m}\\
& \Rightarrow \quad v \quad=\frac{2,000}{4} \\
& =500 \mathrm{~ms}^{-1} \tag{5~m}
\end{align*}
$$

4. A particle, of mass 2 kg , rests on a smooth horizontal table. It is connected by two taut, light, inextensible strings which pass over smooth light pulleys at the edges of the table to particles, of masses 5 kg and 12 kg , which hang freely under gravity.

(i) Show on separate diagrams the forces acting on each particle.

(ii) Write down the equation of motion for each particle.

(1)	$12 g-T$	$=$
(2)	$S-5 g$	$=5 a$
(3	$T-S$	$=$
(4)	R	$=$
		$=2 a$

(iii) Find the common acceleration of the particles.
(1) $\left.\begin{array}{rlll} & 12 g-T & & = \\ & \Rightarrow 12(10)-T\end{array}\right)$

4(iv) Find the tension in each string.

$$
\text { (1) } \begin{align*}
12 g-T & = \\
T & =12 a \\
& =12 \mathrm{~g}-12 a \\
& =12(10)-12\left(\frac{70}{19}\right) \tag{5~m}\\
& =120-\frac{840}{19} \\
& =\frac{1,440}{19} \mathrm{~N} / 75.789 \mathrm{~N}
\end{align*}
$$

(2) $\Rightarrow \quad S-5 g$

$$
\begin{array}{ll}
& = \\
& =5 a \\
& = \\
& 5 a-5 g \\
& \left.=\frac{70}{19}\right)-5(10) \tag{5~m}\\
& =\quad \frac{350}{19}-50 \\
& =-\frac{600}{19}-50 \\
& \mathrm{~N} /-31.579 \mathrm{~N}
\end{array}
$$

5. A smooth sphere A, of mass 5 kg , collides directly with another smooth sphere B, of mass 2 kg , on a smooth horizontal table.

Before impact A and B are moving in opposite
 directions with speeds of $4 \mathrm{~ms}^{-1}$ and $6 \mathrm{~ms}^{-1}$ respectively.
The coefficient of restitution for the collision is $\frac{1}{4}$.

Find
(i) the speed of A and the speed of B after the collision

Sphere	Mass	Speed before	Speed after
A	5 kg	4	p
B	2 kg	-6	q

COM:

$$
\begin{array}{rlll}
m_{\mathrm{A}} u_{\mathrm{A}}+m_{\mathrm{B}} u_{\mathrm{B}} & = & m_{\mathrm{A}} v_{\mathrm{A}}+m_{\mathrm{A}} v_{\mathrm{A}} \\
\Rightarrow 5(4)+2(-6) & & = & 5(p)+2(q) \\
\text { (1) } \Rightarrow 8 & = & 5 p+2 q \tag{5~m}
\end{array}
$$

NEL:

$$
\begin{align*}
& \frac{v_{A}-v_{B}}{u_{A}-u_{B}} \quad=-e \\
& \frac{p-q}{4-(-6)} \quad=\quad-\frac{1}{4} \tag{5~m}\\
& \Rightarrow 4(p-q) \quad=\quad-1(4+6) \\
& =-10 \\
& \Rightarrow 4 p-4 q \quad=\quad-10 \tag{5~m}\\
& \text { (2) } \Rightarrow 2 p-2 q \quad=\quad-5 \\
& \text { (1) } 5 p+2 q \quad=8(\times 2) \\
& \text { (2) } \frac{2 p-2 q}{7 p}=-5(\times 1) \\
& \begin{array}{lll}
\Rightarrow & 7 p & = \\
& = & 3 \\
\Rightarrow & p &
\end{array} \tag{5~m}\\
& \text { (1) } \begin{aligned}
5 p+2 q & =8 \\
\Rightarrow \quad 2 q & =8-5 p
\end{aligned} \\
& =8-5\left(\frac{3}{7}\right) \\
& =\frac{41}{7} \\
& \Rightarrow \quad q \quad=\quad \frac{41}{14} \mathrm{~ms}^{-1} \tag{5~m}
\end{align*}
$$

5(ii) the loss in kinetic energy due to the collision
K.E. before collision

$$
\begin{align*}
\text { K.E.before } & =\frac{1}{2} m_{A} u_{A}^{2}+\frac{1}{2} m_{B} u_{B}^{2} \\
& =\frac{1}{2}(5)(4)^{2}+\frac{1}{2}(2)(-6)^{2} \\
& =\frac{1}{2}(80)+\frac{1}{2}(72) \\
& =40+36 \\
& =76 \mathrm{~J} \tag{5~m}
\end{align*}
$$

$$
\begin{align*}
\begin{aligned}
& \text { K.E. after collision } \\
& \text { K.E.after } \\
&=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2} \\
&=\frac{1}{2}(5)\left(\frac{3}{7}\right)^{2}+\frac{1}{2}(2)\left(\frac{41}{14}\right)^{2} \\
&=\frac{1,771}{196} \mathrm{~J} / 9.681 \\
&=\frac{1,036}{} \mathrm{~J} \\
& \Rightarrow \quad \text { K.E.loss } \\
&=76-\frac{1,771}{196} \\
&=\frac{13,125}{196} \mathrm{~J} / 66.964 \mathrm{~J}
\end{aligned}
\end{align*}
$$

(iii) the magnitude of the impulse imparted to A due to the collision.

$$
\begin{align*}
I_{\mathrm{A}} & =m_{\mathrm{A}} v_{\mathrm{A}}-m_{\mathrm{A}} u_{\mathrm{A}} \\
& =5\left(\frac{3}{7}\right)-5(4) \\
& =\frac{15}{7}-20 \\
& =-\frac{125}{7} \mathrm{Ns} / 17.857 \mathrm{~N}
\end{align*}
$$

6. (a) Particles of weights $3 \mathrm{~N}, 2 \mathrm{~N}$ and 5 N are placed at the points $(11,-10),(1,5)$ and $(5,-6)$, respectively.

Find the co-ordinates of the centre of gravity of the system.

$$
\begin{align*}
3 \mathrm{~N} @(11,-10)+2 \mathrm{~N} @ & (1,5)+5 \mathrm{~N} @(5,-6) \\
& =10 \mathrm{~N} @(x, y) \\
\Rightarrow \quad 3(11)+2(1)+5(5) & =\frac{10 \bar{x}}{} \\
\Rightarrow \quad \bar{x} & =\frac{3(11)+2(1)+5(5)}{10} \tag{5~m}\\
& =\frac{33+2+25}{10} \\
& =\frac{60}{10} \\
& =6 \tag{5~m}\\
\Rightarrow 3(-10)+2(5)+5(-6) & =\frac{10 \bar{y}}{10} \\
\Rightarrow \quad \bar{y} & =\frac{3(-10)+2(5)+5(-6)}{10} \tag{5~m}\\
\Rightarrow & =\frac{-30+10-30}{10} \\
\Rightarrow \operatorname{cog} & =-5 \\
& = \tag{5~m}\\
& =(6,-5)
\end{align*}
$$

6(b) A uniform lamina $A B C F E$ consists of a rectangle $A B C E$ and two right-angled triangles $E D F$ and $D C F$.

The co-ordinates of the points are $A(0,0), B(15,0), C(15,8), D(9,8)$, $E(0,8)$ and $F(9,14)$.

Find the co-ordinates of the centre of gravity of the lamina.

(30)

Rectangle $A B C E$

Area of rectangle $A B C E$

$$
\begin{align*}
& =\quad|(15-0)(8-0)| \\
& = \\
& =\quad \mid(15(8) \mid \tag{5~m}\\
& =120 \text { units }^{2}
\end{align*}
$$

Centres of gravity of $\triangle E C F$

	g_{1}	$=\left(\frac{0+15+15+0}{4}, \frac{0+0+8+8}{4}\right)$	
\Rightarrow	$\operatorname{cog} \triangle E C F$		$\ldots(7.5,4)$

Triangle $E C F$

$E(0,8)$	\rightarrow	$(0,0)$
$C(15,8)$	\rightarrow	$(15,0)$
$F(9,14)$	\rightarrow	$(9,6)$

$\Rightarrow \quad$ Area of $\triangle E C F$
$=\frac{1}{2}|(15)(6)-(9)(0)|$
$=\frac{1}{2}|90|$
$=45$ units 2
Centres of gravity of $\triangle E C F$

$$
\begin{align*}
g_{2} & & =\left(\frac{0+15+9}{3}, \frac{8+8+14}{3}\right) \\
\Rightarrow \operatorname{cog} \triangle E C F & & =(8,10) \tag{5~m}
\end{align*}
$$

Co-ordinates of the centre of gravity of the lamina
$120 @(7.5,4)+45 @(8,10)=(120+45) @(x, y)$
$\Rightarrow 120(7.5)+45(8) \quad=\quad 165(x)$
$\Rightarrow 900+360 \quad=165 x$
$\Rightarrow 1,260 \quad=165 x$
$\Rightarrow x=\frac{1,260}{165}$
$=\frac{252}{33} / 7.636$
$\Rightarrow \quad 120(4)+45(10)$
$=\quad 165(y)$
$\Rightarrow \quad 480+450$
$=165 y$
$\Rightarrow \quad 930$
$=165 y$
$\Rightarrow \quad y$
$=\frac{930}{165}$
$=\frac{186}{33} / 5.636 \ldots$
$\Rightarrow \quad \operatorname{cog}$ of lamina
$=\left(\frac{252}{33}, \frac{186}{33}\right)$
7. A uniform ladder, of weight W, rests on rough horizontal ground and leans against a smooth vertical wall.

The foot of the ladder is 8 m from the wall and the top of the ladder is 15 m above the ground.
(i) Find the length of the ladder.

$$
\begin{aligned}
l^{2} & =15^{2}+8^{2} \\
& =225+64 \\
& =289 \\
\Rightarrow \quad l & =17 \mathrm{~m}
\end{aligned}
$$

8 m

The coefficient of friction between the ladder and the ground is μ.
(ii) Show on a diagram all of the forces acting on the ladder.

(iii) Show that the value of $\mu>\frac{4}{15}$.
$\begin{array}{lll}\text { (1) } & R \\ & & S \\ & \Rightarrow & S\end{array}$
$=\quad W$
$=\quad \mu W$

Assume that the ladder is on the point of slipping
Taking moments @ foot of the ladder

$$
\text { (3) } \begin{align*}
(15) S & =\left(\frac{8}{2}\right) W \tag{5~m}\\
\Rightarrow \quad S & =\frac{(8)}{(15)(2)} W \\
& =\frac{4}{15} W \tag{5~m}
\end{align*}
$$

7(iii) (Continued)

$$
\begin{align*}
& S \quad=\quad \mu W \\
& =\frac{4}{15} W \\
& \Rightarrow \quad \mu W \quad=\frac{4}{15} W \\
& \Rightarrow \mu \quad=\frac{4}{15} \\
& \Rightarrow \quad \text { if } \mu \geq \frac{4}{15} \text {, then the ladder will not slip } \tag{5~m}
\end{align*}
$$

(iv) A person, whose weight is the same as the ladder, starts to climb the ladder. If the coefficient of friction between the ladder and the ground is $\frac{1}{3}$, how far can the person safely climb the ladder before it begins to slip?

$$
\text { (1) } \begin{align*}
R & =\quad W+W \\
\text { (2) } & =2 W \\
S & =\quad \mu R \\
& =\frac{1}{3}(2 W) \tag{5~m}\\
\text { (3) } & \\
& \\
S(15) & =\frac{2}{3} W \tag{5~m}\\
\Rightarrow \quad 15\left(\frac{2}{3} W\right) & =4(4)+2 W(x \text { si } \\
\Rightarrow \quad 2 W x\left(\frac{8}{17}\right) & =10 W+2 W x\left(\frac{8}{17}\right) \\
\Rightarrow \quad & =6 W \\
\Rightarrow \quad x & =\left(\frac{17}{8}\right)\left(\frac{1}{2}\right)(6) \\
& =\frac{102}{16} \tag{5~m}\\
& =6.375 \mathrm{~m}
\end{align*}
$$

8. A sphere of diameter 10 m is fixed to a horizontal surface.

A smooth particle of mass 14 kg describes a horizontal circle of radius $r \mathrm{~m}$ on the smooth inside surface of a sphere.

The plane of the circular motion is 1.4 m below the centre of the sphere.

(i) Find the value of r.

$$
\begin{array}{lll}
& r^{2}+(1.4)^{2} & = \\
\Rightarrow & r^{2}+1.96 & = \\
\Rightarrow & r^{2} & =25 \\
& & = \\
\Rightarrow & r & = \tag{5~m}\\
& & 4.8 \mathrm{~m}
\end{array}
$$

(ii) Find the normal reaction between the particle and the surface of the sphere.

8(iii) Calculate the angular velocity of the particle.
Give your answer correct to one decimal place.

$$
\begin{align*}
\cos \alpha & =\frac{4.8}{5} \tag{20}\\
& =\frac{24}{25} \tag{5~m}\\
& R \cos \alpha \\
\Rightarrow \quad 500\left(\frac{24}{25}\right) & \tag{10~m}\\
& =m \omega^{2} r \\
\Rightarrow \quad 480 & =(14)\left(\omega^{2}\right)(4.8) \\
\Rightarrow \quad \omega^{2} & =\frac{480}{67.2} \\
\Rightarrow \quad \omega & =7.142857 \ldots \\
& \\
& =\sqrt{7.142857 \ldots} \tag{5~m}\\
& \\
& \cong 2.672612 \ldots \\
&
\end{align*}
$$

9. (a) State the Principle of Archimedes.

- when a body is wholly or partly immersed in a liquid,
- it suffers an upthrust or buoyancy equal in magnitude to the weight of the liquid displaced

A solid piece of metal, of relative density 5 , weighs 20 N in air.
(i) How much does the metal weigh in water?

$$
\begin{align*}
B_{\mathrm{w}} & =\frac{W}{s} \\
& =\frac{20}{5} \\
& =4 \tag{5~m}
\end{align*}
$$

Apparent weight

$$
\begin{align*}
& =\quad 20-4 \\
& =\quad 16 \mathrm{~N} \tag{5~m}
\end{align*}
$$

(ii) How much does the metal weigh in a liquid of relative density 0.8 ?

$$
\begin{align*}
B_{l} & =\frac{s_{l} W}{s} \\
& =\frac{0.8(20)}{5} \\
& =3.2
\end{align*}
$$

Apparent weight

$$
\begin{align*}
& =\quad 20-3.2 \\
& =\quad 16.8 \mathrm{~N} \tag{5~m}
\end{align*}
$$

9(b) A sphere has a radius of 1.25 m .
The relative density of the sphere is 0.8 and it is completely immersed in a tank of liquid of relative density 0.85 .

The sphere is held at rest by a light
 inextensible string which is attached to the base of the tank.
(i) Find the weight of the sphere, correct to two decimal places.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3}(3.14 \ldots)(1.25)^{3} \\
& =8.181023 \ldots \\
& \cong 8.18 \mathrm{~m}^{3} \\
W & =\rho_{l} V g \\
& =(0.8 \times 1,000)(8.18)(10) \\
& =65,440 \mathrm{~N}
\end{aligned}
$$

(ii) Find the tension in the string.
[Density of water $=1,000 \mathrm{~kg} \mathrm{~m}^{-3}$.]

$$
\begin{array}{rll}
B & = & \rho_{l} V g \tag{10}\\
& = & (0.85 \times 1,000)(8.18)(10) \\
& = & 69,530 \mathrm{~N} \\
& & \\
\Rightarrow \quad B & = & 65,440+T \\
\Rightarrow & & = \\
& & =69,530-65,440 \\
& & 4,090 \mathrm{~N}
\end{array}
$$

Notes:

Pre-Leaving Certificate Examination, 2011

Applied Mathematics

Higher Level
 Marking Scheme (300 marks)

General Instructions

1. Penalties of three types are applied to students' work as follows:

Slips	- numerical slips	$\mathrm{S}(-1)$
Blunders	- mathematical errors	$\mathrm{B}(-3)$
Misreading	- if not serious	$\mathrm{M}(-1)$

Serious blunder or omission or misreading which oversimplifies:

- award the attempt mark only.

Attempt marks are awarded as follows: 5 (Att. 2), 10 (Att. 3)
2. Mark all answers, including excess answers and repeated answers whether cancelled or not, and award the marks for the best answers.
3. Mark scripts in red unless a student uses red. If a student uses red, mark the script in blue or black.
4. Number the grid on each script 1 to 10 in numerical order, not the order of answering.
5. Scrutinise all pages of the answer book.
6. The marking scheme shows one correct solution to each question. In many cases there are other equally valid methods.

Six questions to be answered. All questions carry equal marks. $(6 \times 50 \mathrm{~m})$

1. (a) Two people are running straight towards each other.

At a certain instant they are 57.5 m apart.
The first person is moving at $3 \mathrm{~ms}^{-1}$ and constant acceleration of $0.1 \mathrm{~ms}^{-2}$ and the other person is moving at $2 \mathrm{~ms}^{-1}$ and constant acceleration of $0.05 \mathrm{~ms}^{-2}$.
(i) How long does it take for them to meet?

$$
\begin{align*}
& s \quad=u t+1 / 2 a t^{2} \\
& s_{1 \text { st person }}+s_{2 \text { nd person }}=57.5 \\
& u_{1}=3 \\
& a_{1}=0.1 \\
& t_{1}=t \\
& \Rightarrow \quad\left(3 t+\frac{1}{2}(0.1) t^{2}\right)+\left(2 t+\frac{1}{2}(0.05) t^{2}\right)=\quad 57.5 \tag{5~m}\\
& \Rightarrow 3 t+0.05 t^{2}+2 t+0.025 t^{2} \quad=\quad 57.5 \\
& \Rightarrow 5 t+0.075 t^{2} \quad=57.5 \\
& \Rightarrow 3 t^{2}+200 t-2,300 \quad=0 \\
& \Rightarrow(3 t+230)(t-10) \quad=0 \\
& \Rightarrow 3 t+230 \quad=0 \\
& \Rightarrow \quad t \\
& =-\frac{230}{3} \\
& \text { Solution not valid } \\
& \Rightarrow t-10 \quad=\quad 0 \\
& \Rightarrow t=10 \tag{5~m}
\end{align*}
$$

(ii) Find the speed of the two people when they meet.

$$
\begin{align*}
& v \\
& =u+a t \\
& u_{1}=3 \\
& a_{1}=0.1 \\
& t_{1}=10 \\
& \Rightarrow \quad v_{1 \text { st person }} \\
& v \\
& \begin{array}{ll}
= & 3+(0.1)(10) \\
= & 4 \mathrm{~ms}^{-1}
\end{array} \\
& =4 \mathrm{~ms}^{-1} \tag{5~m}\\
& =\quad u+a t \\
& u_{1}=2 \\
& a_{1}=0.05 \\
& t_{1}=10 \\
& \Rightarrow \quad v_{2 \text { nd person }} \quad=\quad 2+(0.05)(10) \\
& =2.5 \mathrm{~ms}^{-1} \tag{5~m}
\end{align*}
$$

(b) A cyclist, who is travelling at a constant speed of $8 \mathrm{~ms}^{-1}$ on a straight road, observes a bus 50 m ahead. The bus starts to accelerate from rest, with a constant acceleration. If the cyclist continues at a constant speed of $8 \mathrm{~ms}^{-1}$, he can just catch up with the bus.
(i) Find the constant acceleration of the bus.

$$
\begin{align*}
& v^{2} \\
& =u^{2}+2 a s \\
& \text { Relative to the bus } \\
& =8-0 \\
& =8 \mathrm{~ms}^{-1} \tag{5~m}\\
& a_{c b} \quad=\quad a_{c}-a_{b} \\
& =0-a \\
& =-a \\
& s_{c b} \quad=\quad 50 \\
& v_{c b} \quad=0 \tag{5~m}\\
& \Rightarrow 0 \quad=(8)^{2}+2(-a)(50) \\
& \Rightarrow \quad 100 a \quad=\quad 64 \\
& \Rightarrow \quad a \quad \frac{64}{100} \\
& =0.64 \mathrm{~ms}^{-2} \tag{5~m}
\end{align*}
$$

(ii) How near would the cyclist get to the bus if he can only manage to cycle at $6 \mathrm{~ms}^{-1}$?

Relative to the bus

$$
\begin{aligned}
u_{c b} \quad & =u_{c}-u_{b} \\
& =6-0 \\
& =8 \mathrm{~ms}^{-1}
\end{aligned}
$$

Minimum gap when their speeds are equal
$v_{\mathrm{c}} \quad=\quad v_{b}$
$v_{b} \quad=\quad u_{b}+a_{b} t$
$v_{b} \quad=6$
$u_{b} \quad=0$
$a_{b} \quad=\quad 0.64$
$\Rightarrow 6=0+0.64 t$
$\Rightarrow t=\frac{0.64}{6}$
$=\quad 9.375 \mathrm{~s}$
$\therefore \quad$ Rel. displacement $=$ 56.25-28.125
$=28.125$
\therefore Minimum gap $\quad=\quad 50-28.125$

$$
\begin{equation*}
=\quad 21.875 \mathrm{~m} \tag{5~m}
\end{equation*}
$$

2. (a) Two straight roads intersect at right angles.

A car is travelling north on one road at $4 \mathrm{~ms}^{-1}$.
A bus is travelling east on the other road at $3 \mathrm{~ms}^{-1}$.
The bus is 50 m away from the intersection as the car passes through the intersection.
(i) Find the velocity of the bus relative to the car.

$$
\begin{align*}
v_{\mathrm{C}} & & 4 \vec{j} \\
v_{\mathrm{B}} & & 3 \vec{i} \\
\Rightarrow \quad v_{\mathrm{BC}} & & v_{\mathrm{B}}-v_{\mathrm{C}} \\
& & 3 \vec{i}-4 \vec{j} \tag{5~m}\\
\Rightarrow \quad\left|v_{\mathrm{BC}}\right| & & \sqrt{(3)^{2}+(4)^{2}} \\
& & =\sqrt{9+16} \\
& & =\sqrt{25} \\
& & =5
\end{align*}
$$

(ii) Find the shortest distance between the car and the bus and the time at which this occurs.

Direction

$$
\begin{aligned}
\tan \theta & =\frac{4}{3} \\
\Rightarrow \quad \theta & =\tan ^{-1}\left(\frac{4}{3}\right) \\
& =\tan ^{-1}(1.333333 \ldots) \\
& =53.130102 \ldots{ }^{\circ} \\
& \cong 53.13^{\circ}
\end{aligned}
$$

2(a) (iii) Calculate the length of time for which the car and the bus are less than or equal to 41 m apart.

$$
\begin{array}{rlrl}
& y^{2}+x^{2} & & 41^{2} \tag{10}\\
\Rightarrow y^{2}+40^{2} & & =1,681 \\
\Rightarrow y^{2} & & 1,681-1,600 \\
\Rightarrow y 1 & & 9 \\
& & =\frac{2 y}{\left|v_{\mathrm{BC}}\right|} \\
\text { Time } & & \frac{2(9)}{5} \\
& & =3.6 \mathrm{~s}
\end{array}
$$

2(b) The wind is blowing with a constant speed of $5 \mathrm{~ms}^{-1}$. To a man running at $1 \mathrm{~ms}^{-1}$ in a southerly direction, the wind appears to blow from the north-west.
(i) Find the true velocity of the wind.

$$
\begin{array}{ll}
\text { Let } \begin{aligned}
v_{w} & =x \vec{i}+y \vec{j} \\
& \left|v_{w}\right| \\
\Rightarrow \sqrt{x^{2}+y^{2}} & =5 \\
\Rightarrow & =5 \\
x^{2}+y^{2} & \\
& =25 \\
\Rightarrow \quad v_{m} & =0 \vec{i}-1 \vec{j} \\
v_{w m} & \\
& \\
& \\
& \\
& \\
& \\
& \\
& x \vec{i}+y \vec{j})-(0 \vec{i}-1 \vec{j}) \\
&
\end{aligned} \mathrm{v}_{m}(y+1) \vec{j} \quad \text { from NW }
\end{array}
$$

By substitution:

$$
\begin{align*}
& \Rightarrow[-(y+1)]^{2}+y^{2} \quad=\quad 25 \\
& \Rightarrow y^{2}+2 y+1+y^{2} \quad=\quad 25 \\
& \Rightarrow 2 y^{2}+2 y-24 \quad=0 \\
& \Rightarrow y^{2}+y-12 \quad=0 \\
& \Rightarrow \quad(y-3)(y+4) \quad=\quad 0 \\
& \Rightarrow \quad y-3 \quad 0 \quad 0 \quad y+4 \quad=0 \\
& \Rightarrow \quad=3 \quad 3 \quad y \quad=\quad-4 \\
& \begin{array}{rllllll}
\Rightarrow x & = & -(3+1) & \Rightarrow & x & -4 & \\
& = & -(-4+1)
\end{array} \\
& \text { If } \quad v_{w} \quad=\quad-4 \vec{i}+3 \vec{j} \\
& \Rightarrow v_{w m} \quad=\quad-4 \vec{i}+4 \vec{j} \text { to NW } \\
& \text { If } \quad v_{w} \quad=3 \vec{i}-4 \vec{j} \\
& \Rightarrow v_{w m} \quad=\quad 3 \vec{i}-3 \vec{j} \quad \text { from NW } \\
& \Rightarrow \quad v_{w} \quad=3 \vec{i}-4 \vec{j} \tag{5~m}
\end{align*}
$$

2(b) (ii) From what direction would the wind appear to blow if the man reversed direction but continued to run at the same speed?

$$
\begin{align*}
& v_{m} \tag{10}\\
\Rightarrow \quad v_{w m} & \\
& =0 \vec{i}+1 \vec{j} \tag{5m}\\
& \\
\Rightarrow \quad \tan \theta & =3 \vec{i}-5 \vec{j} \\
\Rightarrow \quad & \frac{5}{3} \\
\Rightarrow & \tag{5~m}\\
& \\
& \\
& \\
& \\
& \\
& \tan ^{-1} 1.666666 \ldots \\
& \\
& 59^{\circ} \text { South of East }
\end{align*}
$$

3. (a) A particle is projected with a velocity of $112 \sqrt{2} \mathrm{~ms}^{-1}$ at an angle of 45° to the horizontal plane.

Find
(i) the maximum height of the particle above the plane

$$
\begin{align*}
\vec{u} & =112 \sqrt{2} \cos 45^{\circ} \vec{i}+56 \sqrt{2} \sin 45^{\circ} \vec{j} \\
& =112(\sqrt{2})\left(\frac{1}{\sqrt{2}}\right) \vec{i}+112(\sqrt{2})\left(\frac{1}{\sqrt{2}}\right) \vec{j} \\
& =112 \vec{i}+112 \vec{j} \tag{5~m}
\end{align*}
$$

Maximum height:

$$
\begin{align*}
& u_{y} \quad=\quad 112 \vec{j} \\
& \begin{array}{lll}
a_{y} & = & -g
\end{array} \\
& v^{2} \quad=\quad(112)^{2}+2(-\mathrm{g}) h_{\max } \\
& \Rightarrow 0 \quad=\quad 12,544-2(9.8) h_{\text {max }} \\
& \Rightarrow \quad 19.6 h_{\max } \quad=\quad 12,544 \\
& \Rightarrow \quad h_{\max } \quad=\frac{12,544}{19.6} \\
& =640 \mathrm{~m} \tag{5~m}
\end{align*}
$$

(ii) the velocity of the particle after 4 seconds.

$$
\begin{align*}
v_{x} & =112 \vec{i} \\
\Rightarrow \quad v_{y} & =\left(u_{y}+a_{y} t\right) \vec{j} \\
& =(112-9.8(4)) \vec{j} \\
& =(112-39.2) \vec{j} \\
& =72.8 \vec{j} \tag{5~m}\\
\Rightarrow \quad \text { Speed } & =\sqrt{v_{x}^{2}+v_{y}^{2}} \\
& =\sqrt{(112)^{2}+(72.8)^{2}} \\
& =\sqrt{12,544+5,299.84} \\
& =\sqrt{17,843.84} \\
& =133.580836 \ldots \\
& \cong 133.6 \mathrm{~m} / \mathrm{s} \tag{5~m}
\end{align*}
$$

3(b) Two particles X and Y are fired at the same time and with the same velocity of $98 \mathrm{~ms}^{-1}$ from a point O on horizontal ground. X is fired at an angle 45° to the horizontal. Y is fired at an angle $\tan ^{-1} 3$ to the horizontal. Both particles hit the same stationary target, but not at the same time.
(i) Write down the position vector of X after time t_{1} and the position vector of Y after time t_{2}. (Take O as the origin.)

$$
\begin{align*}
s_{x} & =u \cos \theta t \\
s_{y} & =u \sin \theta t-\frac{1}{2} g t^{2} \\
\overrightarrow{r_{\mathrm{X}}} & =98\left(\frac{1}{\sqrt{2}}\right) t_{1} \vec{i}+\left((98)\left(\frac{1}{\sqrt{2}}\right) t_{1}-\frac{1}{2}(9.8) t_{1}^{2}\right) \vec{j} \\
& =\frac{98}{\sqrt{2}} t_{1} \vec{i}+\left(\frac{98}{\sqrt{2}} t_{1}-4.9 t_{1}^{2}\right) \vec{j} \tag{5~m}\\
\overrightarrow{r_{\mathrm{Y}}} & =98\left(\frac{1}{\sqrt{10}}\right) t_{2} \vec{i}+\left((98)\left(\frac{3}{\sqrt{10}}\right) t_{2}-\frac{1}{2}(9.8) t_{2}^{2}\right) \vec{j} \\
& =\frac{98}{\sqrt{10}} t_{2} \vec{i}+\left(\frac{294}{\sqrt{10}} t_{2}-4.9 t_{2}^{2}\right) \vec{j} \tag{5~m}
\end{align*}
$$

(ii) Show that $t_{2}=\sqrt{5} t_{1}$.

$$
\begin{align*}
\quad \begin{array}{l}
\overrightarrow{r_{\mathrm{Y}}} \\
\Rightarrow \quad \\
\Rightarrow \quad \\
\Rightarrow \quad \frac{98}{\sqrt{10}} t_{2} \vec{i}+\left(\frac{294}{\sqrt{10}} t_{2}-4.9 t_{2}^{2}\right) \overrightarrow{\mathrm{X}} \\
\Rightarrow \quad \\
\Rightarrow \quad \\
\\
\Rightarrow \quad \\
\\
\\
\\
\\
\\
\\
\\
t_{2}
\end{array} & \frac{98}{\sqrt{20}} t_{2} \\
& =\frac{98}{\sqrt{2}} t_{1} \\
& =\frac{\sqrt{10}}{\sqrt{2}} t_{1} \\
& \left.=\frac{\sqrt{2} \sqrt{5}}{\sqrt{2}} t_{1}-4.9 t_{1}^{2}\right) \vec{j} \\
& =\sqrt{5} t_{1}
\end{align*}
$$

3(b)(iii) Show that the position of the target is $490 \vec{i}+245 \vec{j}$.

$$
\begin{align*}
& \frac{98}{\sqrt{2}} t_{1}-4.9 t_{1}^{2}=\frac{294}{\sqrt{10}} t_{2}-4.9 t_{2}^{2} \tag{5~m}\\
&=\frac{294}{\sqrt{10}}\left(\sqrt{5} t_{1}\right)-4.9\left(\sqrt{5} t_{1}\right)^{2} \\
&=\frac{294}{\sqrt{2}} t_{1}-24.5 t_{1}^{2} \\
& \Rightarrow \quad-4.9 t_{1}^{2}+24.5 t_{1}^{2} \\
&=\frac{294}{\sqrt{2}} t_{1}-\frac{98}{\sqrt{2}} t_{1} \\
& \Rightarrow \quad 19.6 t_{1}^{2} \\
&=\frac{196}{\sqrt{2}} t_{1} \\
& \Rightarrow \quad t_{1}^{2} \frac{196}{(19.6) \sqrt{2}} t_{1} \tag{5~m}\\
& \Rightarrow \quad t_{1} \\
& \Rightarrow \quad t_{1}^{2} \\
& \Rightarrow \quad t_{1} \frac{10}{\sqrt{2}} \\
& \Rightarrow \quad \\
& \Rightarrow \quad \frac{98}{\sqrt{2}} t_{1} \vec{i}+\left(\frac{98}{\sqrt{2}} t_{1}-4.9 t_{1}^{2}\right) \vec{j} \tag{5~m}\\
& \Rightarrow\left.=\frac{980}{\sqrt{2}}\left(\frac{10}{\sqrt{2}}\right) \vec{i}+\left(\frac{980}{2}-\frac{98}{\sqrt{2}}\left(\frac{10}{\sqrt{2}}\right)-4.9\left(\frac{10}{\sqrt{2}}\right)_{1}\right) \vec{j}\right) \vec{j} \\
& \\
&=490 \vec{i}+\frac{490}{2} \vec{j} \\
&=490 \vec{i}+245 \vec{j}
\end{align*}
$$

4. (a) The diagram shows a light inextensible string having one end fixed, passing under a smooth movable pulley P of mass 8 kg and then over a fixed smooth light pulley Q .
A particle of mass 10 kg is attached to the free end of the string.

The system is released from rest.

Find the acceleration of P and the particle, in terms of g.

$$
\begin{align*}
& \text { (1) } 2 T-8 g=8 a \tag{5~m}\\
& \text { (2) } 10 g-T=10(2 a) \\
& \Rightarrow \quad 2 T-8 g \quad=\quad 8 a \\
& 10 g-T=20 a(\times 2) \\
& \Rightarrow \quad 2 T-8 g \quad=\quad 8 a \\
& \Rightarrow \quad \begin{array}{cc}
-2 T+20 g & =40 a \\
12 g & =48 a
\end{array} \\
& \Rightarrow \quad a \quad=\frac{12}{48} g \\
& =\quad \frac{g}{4} \mathrm{~ms}^{-2} \\
& \Rightarrow \quad a_{\mathrm{P}} \quad=\quad \frac{g}{4} \mathrm{~ms}^{-2} \tag{5~m}\\
& \Rightarrow \quad a_{\text {particle }} \quad=\quad 2\left(\frac{g}{4}\right) \\
& =\quad \frac{g}{2} \mathrm{~ms}^{-2} \tag{5~m}
\end{align*}
$$

4(b) A light inextensible string passes over a small smooth fixed pulley.
A particle A, of mass M, is attached to one end of the string and a light smooth movable pulley is attached to the other end.
Two particles of masses of m_{1} and m_{2} are connected by a light inextensible string which passes over this pulley.

The system is released from rest.
(i) Find, in terms of g, M, m_{1} and m_{2},
 the acceleration of the particle A.
(1)
$M g-T$
$=\quad M a$

(2) $T-2 S \quad=0$

(4) $m_{2} g-S \quad m_{2}(b-a) \uparrow_{m_{2} g}^{\mathrm{S}} \downarrow^{\overbrace{2}} \overbrace{a}$

(3) $S-m_{1} g \quad m_{1}(a+b) \uparrow_{m_{1} g}^{\mathrm{S}}$

$$
\begin{array}{ll}
= & M a \\
= & M g-M a
\end{array}
$$

(1) $\Rightarrow \quad M g-T$
(2) $\quad \begin{array}{r}T-2 S \\ \\ \hline\end{array}$
$=0$
$=T$
$\Rightarrow \quad S$
$=\quad M g-M a$
$=\frac{1}{2} M g-\frac{1}{2} M a$
(3) $S-m_{1} g$
$=\quad m_{1}(a+b)$
$\Rightarrow \quad \frac{1}{2} M g-\frac{1}{2} M a-m_{1} g \quad=\quad m_{1} a+m_{1} b$
$\Rightarrow M g-M a-2 m_{1} g \quad=\quad 2 m_{1} a+2 m_{1} b$
$\Rightarrow \quad m_{2} M g-m_{2} M a-2 m_{1} m_{2} g=2 m_{1} m_{2} a+2 m_{1} m_{2} b$

4(b) (Continued)

$$
\text { 4 } \begin{array}{rlll}
& m_{2} g-S & = & m_{2}(b-a) \\
\Rightarrow & m_{2} g-\frac{1}{2} M g+\frac{1}{2} M a & = & m_{2} b-m_{2} a \\
\Rightarrow & 2 m_{2} g-M g+M a & = & 2 m_{2} b-2 m_{2} a \\
\Rightarrow & 2 m_{1} m_{2} g-m_{1} M g+m_{1} M a & = & 2 m_{1} m_{2} b-2 m_{1} m_{2} a \\
\Rightarrow & -2 m_{1} m_{2} g+m_{1} M g-m_{1} M a & = & -2 m_{1} m_{2} b+2 m_{1} m_{2} a
\end{array}
$$

Adding these two equations:

$$
\begin{array}{rlll}
& m_{2} M g-m_{2} M a-2 m_{1} m_{2} g & = & 2 m_{1} m_{2} a+2 m_{1} m_{2} b \\
\Rightarrow & \underline{m_{1}} \underline{M g-m_{1}} \underline{M a-2 m_{1}} \underline{\underline{m_{2}} g} & = & 2 m_{1} \underline{m_{2}} \underline{a-2 m_{1}} \underline{m_{2}} \underline{b} \\
\Rightarrow & m_{2} M g-m_{2} M a+m_{1} M g-m_{1} M a-4 m_{1} m_{2} g \\
& & = & 4 m_{1} m_{2} a \\
\Rightarrow & g\left(m_{2} M+m_{1} M-4 m_{1} m_{2}\right) & = & a\left(4 m_{1} m_{2}+m_{1} M+m_{2} M\right) \\
\Rightarrow & g\left(M\left(m_{2}+m_{1}\right)-4 m_{1} m_{2}\right) & = & a\left(4 m_{1} m_{2}+M\left(m_{1}+m_{2}\right)\right) \\
\Rightarrow & a & = & \frac{g\left(M\left(m_{1}+m_{2}\right)-4 m_{1} m_{2}\right)}{4 m_{1} m_{2}+M\left(m_{1}+m_{2}\right)} \tag{5~m}
\end{array}
$$

(ii) Show that the system will remain at rest
if the mass of particle A is $\frac{4 m_{1} m_{2}}{m_{1}+m_{2}}$.

$$
\begin{array}{llll}
\text { Let } & \begin{array}{l}
a=0 \\
\Rightarrow
\end{array} & \frac{g\left(M\left(m_{1}+m_{2}\right)-4 m_{1} m_{2}\right)}{4 m_{1} m_{2}+M\left(m_{1}+m_{2}\right)} & = \\
\Rightarrow & g\left(M\left(m_{2}+m_{1}\right)-4 m_{1} m_{2}\right) & = & 0 \\
\Rightarrow & M\left(m_{2}+m_{1}\right)-4 m_{1} m_{2} & = & 0 \\
\Rightarrow & M\left(m_{2}+m_{1}\right) & = & 4 m_{1} m_{2} \\
\Rightarrow & M & = & \frac{4 m_{1} m_{2}}{m_{1}+m_{2}}
\end{array}
$$

5. (a) A smooth sphere P , of mass m, moving with speed $2 u$, collides directly with an identical smooth sphere Q , which is moving in the same direction with speed u. The coefficient of restitution for the collision is e.

Find, in terms of m, u and e, the loss of kinetic energy due to the collision.

Sphere	Mass	Speed before	Speed after
P	m	$2 u$	p
Q	m	u	q

COM:

$$
\begin{align*}
& m_{\mathrm{A}} u_{\mathrm{A}}+m_{\mathrm{B}} u_{\mathrm{B}} \quad=\quad m_{\mathrm{A}} v_{\mathrm{A}}+m_{\mathrm{A}} v_{\mathrm{A}} \\
& \Rightarrow m(2 u)+m(u) \quad=\quad m p+m q \tag{5~m}\\
& \Rightarrow m p+m q \quad=\quad 3 m u \\
& \text { (1) } \Rightarrow p+q \quad=3 u \\
& \frac{v_{A}-v_{B}}{u_{A}-u_{B}} \quad=\quad-e \\
& \Rightarrow \frac{p-q}{2 u-u} \quad=\quad-e \tag{5~m}\\
& \text { (2) } \Rightarrow p-q \quad=\quad-1 u e \\
& \text { (1) } p+q \quad=\quad 3 u \\
& \text { (2) } \begin{array}{rll}
\quad \frac{p-q}{2 p} & = & -1 u e \\
2 p & = & u(3-e)
\end{array} \\
& \Rightarrow p=\frac{1}{2} u(3-e) \\
& \begin{array}{lll}
q & = & 3 u-p \\
q & = & 3 u-\frac{1}{2} u(3-e)
\end{array} \\
& =\frac{1}{2} u(6-3+e) \\
& =\quad \frac{1}{2} u(3+e) \tag{5~m}
\end{align*}
$$

Before collision:

$$
\begin{aligned}
\text { K.E. } & =\frac{1}{2}(m)(2 u)^{2}+\frac{1}{2}(m)(u)^{2} \\
& =\frac{5}{2} m u^{2}
\end{aligned}
$$

After collision:

$$
\begin{align*}
\text { K.E. } & =\frac{1}{2}(m)[u(3-e)]^{2}+\frac{1}{2}(m)[u(3+e)]^{2} \\
& =\frac{1}{2}(m)\left(\frac{1}{2} u(3-e)\right)^{2}+\frac{1}{2}(m)\left(\frac{1}{2} u(3+e)\right)^{2} \\
& =\frac{1}{8}\left(m u^{2}\right)\left(9-6 e+e^{2}\right)+\frac{1}{8}\left(m u^{2}\right)\left(9+6 e+e^{2}\right) \\
& =\frac{1}{8}\left(m u^{2}\right)\left(18+2 e^{2}\right) \\
& =\frac{1}{4}\left(m u^{2}\right)\left(9+e^{2}\right) \\
\Rightarrow \quad \text { Loss in K.E. } \quad & =\frac{5}{2} m u^{2}-\frac{1}{4}\left(m u^{2}\right)\left(9+e^{2}\right) \\
& =m u^{2}\left(\frac{10}{4}-\frac{9}{4}-\frac{1}{4} e^{2}\right) \\
& =\frac{1}{4} m u^{2}\left(1-e^{2}\right) \tag{5~m}
\end{align*}
$$

5(b) A smooth sphere A, of mass $2 m$, moving with speed u, collides with a smooth sphere B , of mass $4 m$, which is at rest.
The direction of motion of A, before impact, makes an angle of 45° with the lines of centres of the instant of impact.

After the collision the two spheres move in perpendicular directions.
The coefficient of restitution between the spheres is e.
(i) Show that $e=\frac{1}{2}$.

Sphere	Mass	Speed before	Speed after
A	$2 m$	$\frac{u}{\sqrt{2}} \vec{i}+\frac{u}{\sqrt{2}} \vec{j}$	$p \vec{i}+\frac{u}{\sqrt{2}} \vec{j}$
B	$4 m$	$0 \vec{i}+0 \vec{j}$	$q \vec{i}+0 \vec{j}$

After collision, A and B perpendicular:

$$
\begin{array}{rlll}
& \left(p \vec{i}+\frac{u}{\sqrt{2}} \vec{j}\right)(q \vec{i}+0 \vec{j}) & = & 0 \\
\Rightarrow \quad p q & & = & 0 \\
\Rightarrow \quad p & & 0 \tag{5~m}
\end{array}
$$

COM:

$$
\begin{array}{rlrl}
& m_{\mathrm{A}} u_{\mathrm{A}}+m_{\mathrm{B}} u_{\mathrm{B}} & & m_{\mathrm{A}} v_{\mathrm{A}}+m_{\mathrm{B}} v_{\mathrm{B}} \\
\Rightarrow \quad 2 m\left(\frac{u}{\sqrt{2}}\right)+4 m(0) & & =2 m(0)+4 m q \\
\Rightarrow \quad 4 m q & & =\frac{2 m u}{\sqrt{2}} \\
\Rightarrow \quad q & & \frac{2 u}{4 \sqrt{2}} \\
& & & \frac{u}{2 \sqrt{2}}
\end{array}
$$

NEL:

$$
\begin{array}{rlr}
& \frac{v_{A}-v_{B}}{u_{A}-u_{B}} & = \\
\frac{0-q}{\frac{u}{\sqrt{2}}-0} & = & -e
\end{array}
$$

$$
\begin{array}{rlrl}
\text { (2) } & \Rightarrow q & =\frac{e u}{\sqrt{2}} \\
\text { (1) (2) } & \Rightarrow \frac{e u}{\sqrt{2}} & & =\frac{u}{2 \sqrt{2}} \\
& \Rightarrow e & =\frac{1}{2}
\end{array}
$$

5(b) (ii) Find, in terms of u, the speed of each sphere after the collision.

$$
\begin{align*}
v_{\mathrm{A}} & =0 \vec{i}+\frac{u}{\sqrt{2}} \vec{j} \tag{5}\\
v_{\mathrm{B}} & =q \vec{i}+0 \vec{j} \\
& =\frac{e u}{\sqrt{2}} \vec{i}+0 \vec{j} \tag{5~m}
\end{align*}
$$

(iii) Find the percentage loss in kinetic energy due to the collision.

$$
\begin{align*}
\text { K.E.before } & =\frac{1}{2}(2 m)\left(u^{2}\right)+\frac{1}{2}(4 m)\left(0^{2}\right) \\
& =m u^{2} \\
\text { K.E.after } & =\frac{1}{2}(2 m)\left(\frac{u}{\sqrt{2}}\right)^{2}+\frac{1}{2}(4 m)\left(\frac{u}{2 \sqrt{2}}\right)^{2} \\
& =m\left(\frac{u^{2}}{2}+\frac{2 u^{2}}{4(2)}\right) \\
& =m u^{2}\left(\frac{1}{2}+\frac{1}{4}\right) \\
& =\frac{3}{4} m u^{2} \\
\Rightarrow \quad & =m u^{2}-\frac{3}{4} m u^{2} \\
\Rightarrow \quad & =\frac{1}{4} m u^{2} \\
\Rightarrow \quad \% . E \cdot \text { loss } & =\frac{1}{4} m u^{2} \\
\Rightarrow \quad & =\frac{100}{1} \\
& =\frac{25 u^{2}}{} \tag{5~m}
\end{align*}
$$

6. (a) A light inextensible string, of length $\sqrt{2} \mathrm{~m}$, is attached at one end to a fixed point P which is 1 m above a smooth horizontal table.
The other end of the string is attached to a particle of mass 10 kg which moves uniformly in a horizontal circle, centre $O . O$ is vertically below P.
The reaction between the particle and the table is 48 N .
(i) Find the tension in the string.

$$
\begin{aligned}
r^{2}+1^{2} & = \\
& r^{2}+ \\
& = \\
& =2-1 \\
\Rightarrow \quad r & =
\end{aligned}
$$

$$
\text { (1) } \begin{array}{rll}
m g & = & R+T \sin \alpha \\
\Rightarrow 10(9.8) & & 48+T\left(\frac{1}{\sqrt{2}}\right) \\
\Rightarrow \frac{T}{\sqrt{2}} & & =98-48 \\
\Rightarrow T & =50 \\
\Rightarrow T & & =50 \sqrt{2} \tag{5~m}
\end{array}
$$

(ii) Find the angular velocity of the particle.

$$
\text { (2 } \begin{array}{rll}
& T \cos \alpha & = \\
\Rightarrow \quad 50 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right) & & m \omega^{2} r \\
\Rightarrow & & (10)\left(\omega^{2}\right)(1) \\
\Rightarrow 50 & & =\frac{50}{10} \\
\Rightarrow \omega^{2} & & =5 \tag{5~m}\\
\Rightarrow \omega & & =\sqrt{5} \mathrm{rad} / \mathrm{s}
\end{array}
$$

6(b) A particle P , of mass m, is attached to the midpoint of an elastic string [$A B$], of natural length $2 l$ and elastic constant $k . A$ and B are attached to fixed points on a smooth horizontal table, a distance of $3 l$ apart. Initially the particle is held at rest in a position such that $|A P|=2 l$ and $|P B|=l$, and is then released.
(i) Show that the motion of the particle is simple harmonic.

$$
\begin{align*}
& \xrightarrow{\substack{\frac{3}{2} l}} \tag{20}\\
& F_{r} \quad=\quad k\left(l-l_{0}\right) \\
& =k\left(\frac{3}{2} l-x-l\right) \\
& =\quad \frac{1}{2} k e-k x \tag{5~m}\\
& F_{l} \quad=\quad k\left(l-l_{0}\right) \\
& =\quad k\left(\frac{3}{2} l+x-l\right) \\
& =k\left(\frac{1}{2} l+x\right) \\
& =\quad \frac{1}{2} k l+k x \tag{5~m}\\
& F \quad=\quad F_{r}-F_{l} \\
& =\quad\left(\frac{1}{2} k l-k x\right)\left(\frac{1}{2} l k+k x\right) \\
& =\quad \frac{1}{2} k l-k x-\frac{1}{2} l k-k x \\
& =-2 k x \tag{5~m}\\
& \Rightarrow m a \quad=\quad-2 k x \\
& \Rightarrow a=-\frac{2 k}{m} x \\
& a \quad=-\omega^{2} x \tag{5~m}
\end{align*}
$$

(ii) Find, in terms of m and k, the period of the motion.

$$
\begin{align*}
a & =-\frac{2 k}{m} x \\
a & =-\omega^{2} x \\
\Rightarrow \omega & =\sqrt{\frac{2 k}{m}} \tag{5~m}\\
T & =\frac{2 \pi}{\omega} \\
& =2 \pi \sqrt{\frac{m}{2 k}}
\end{align*}
$$

7. (a) One end of a uniform ladder, of weight W and length $2 l$, rests against a rough vertical wall, and the other end rests on rough horizontal ground.
The coefficient of friction at each contact is $\frac{1}{3}$.
The ladder makes an angle of $\tan ^{-1} 2$ with the horizontal and is in a vertical plane which is perpendicular to the wall.

Find the distance that a person of weight W can safely climb before the ladder begins to slip.

$$
\begin{align*}
& \text { (1) } \begin{array}{l}
R+\mu S \\
\Rightarrow \quad \\
R+\frac{1}{3} S
\end{array} \tag{5~m}\\
& \text { (2) } S \\
& \text { S } \\
& =\quad \mu R \\
& =\frac{1}{3}(2 W) \\
& =\frac{2}{3} W \\
& \begin{array}{rlr}
\mu R & & =S \\
\Rightarrow \quad \frac{1}{3} R & & =\quad S
\end{array} \\
& \Rightarrow \quad \frac{1}{3}\left(2 W-\frac{1}{3} S\right) \quad=\quad S \\
& \Rightarrow \quad \frac{2}{3} W-\frac{1}{9} S \quad S \\
& \Rightarrow 6 W-S \quad=\quad 9 S \\
& \Rightarrow 6 W \quad=10 S \\
& \Rightarrow S \quad=\frac{3}{5} W
\end{align*}
$$

Taking moments @ foot of the ladder

$$
\begin{align*}
& 3 \quad(15) S=\left(\frac{8}{2}\right) \mathrm{W} \tag{5~m}\\
& W(l \cos \alpha)+W(x \cos \alpha)=S(2 l \sin \alpha)+\frac{1}{3} S(2 l \cos \alpha) \\
& \Rightarrow \quad W l+W x \\
& =2 l S \tan \alpha+\frac{2}{3} S l \\
& \alpha \quad=\quad \tan ^{-1} 2 \\
& \Rightarrow W l+W x \quad=\quad 4 l S+\frac{2}{3} S l \\
& \Rightarrow W l+W x \quad=\quad 4 l\left(\frac{3}{5} W\right)+\frac{2}{3}\left(\frac{3}{5} W\right) l \\
& \Rightarrow W l+W x \quad=\frac{12}{5} W l+\frac{2}{5} W l \\
& =\frac{14}{5} W l \\
& \Rightarrow \quad W x \quad=\quad \frac{14}{5} W l-W l \\
& =\frac{9}{5} W l \\
& \Rightarrow \quad x \quad=\frac{9}{5} l \tag{5~m}
\end{align*}
$$

7(b) Two uniform ladders, $A C$ and $B C$, of equal length $2 l$ and weights W and $3 W$ respectively, are freely jointed at C. They stand in a vertical plane with A and B on rough horizontal ground. Both ladders make an angle θ with the ground. The coefficient of friction at both A and B is $\frac{1}{2}$.

(i) Find, in terms of W, the normal reactions at A and B.

(1) $R+S$
$=\quad W+3 W$
$=4 W$
(2) $F=G$

Taking moments @ A
(ii) Show that slipping will occur first at A.

$$
\begin{array}{llll}
& R & < & S \\
& \mu R & < & \mu S
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad \text { slipping will occur at } A \text { before } C \tag{5~m}
\end{equation*}
$$

$$
\begin{aligned}
& 3 \quad W(l \cos \theta)+3 W(3 l \cos \theta)=S(4 l \cos \theta) \\
& \Rightarrow \quad W+9 W \quad=\quad 4 S \\
& \Rightarrow 4 S \quad=10 \mathrm{~W} \\
& \Rightarrow \quad S \quad=\frac{5}{2} W \\
& \Rightarrow \quad R \quad=\quad 4 W-\frac{5}{2} W \\
& =\frac{3}{2} W
\end{aligned}
$$

7(b) (iii) Find the value of $\tan \theta$ at which slipping will occur.

(1) X
$=\quad \mu R$
$=\frac{1}{2}\left(\frac{3}{2} W\right)$
$=\frac{3}{4} W$
(2) $Y+W$

$$
\Rightarrow \quad Y
$$

$=\quad R$
$=\frac{3}{2} W$
$=\frac{3}{2} W-W$
$=\frac{1}{2} W$

Taking moments@A

$$
3 \begin{array}{rlrl}
& W(l \cos \theta)+Y(2 l \cos \theta) & & =X(2 l \sin \theta) \\
\Rightarrow & W(l \cos \theta)+\left(\frac{1}{2} W\right)(2 l \cos \theta) & =\left(\frac{3}{4} W\right)(2 l \sin \theta) \\
\Rightarrow & & =\frac{3}{2} W l \sin \theta \\
\Rightarrow & & =\frac{3}{2} \sin \theta \\
\Rightarrow \quad \cos \theta+\cos \theta & & =\frac{3}{2} \sin \theta \\
\Rightarrow \quad 2 \cos \theta & & =3 \sin \theta \\
\Rightarrow \quad 4 \cos \theta & & =\frac{4}{3} \\
\Rightarrow & & =\frac{4}{3} \tag{5~m}
\end{array}
$$

8. (a) Prove that the moment of inertia of a uniform square lamina, of mass m and side $2 l$, about an axis through its centre parallel to one of the sides is $\frac{1}{3} m l^{2}$.

Bookwork

m	$2 \rho l$
ΔI	$\ldots(5 \mathrm{~m})$
set up integral and solve	$\ldots(5 \mathrm{~m})$
Deduce	$\ldots(5 \mathrm{~m})$

8(b) A uniform circular disc, of mass m and radius r, has a particle, of mass $2 m$, attached to its centre. The system performs small oscillations in a vertical plane about a horizontal axis l through a point on its circumference, perpendicular to the plane of the disc.
(i) Find, in terms of g and r, the period of small oscillations.

Point Mass:

$$
\begin{align*}
\frac{1}{I_{\text {point mass }}} & =M d^{2} \\
& = \\
& =2 m r^{2} \\
\Rightarrow \quad I_{\text {total }} & =\quad I_{P}+I_{\text {point mass }} \\
& =\frac{3}{2} m r^{2}+2 m r^{2} \\
& =\frac{7}{2} m r^{2} \\
& =2 \pi \sqrt{\frac{I}{M g h}} \tag{5~m}\\
T & =2 \pi \sqrt{\frac{\frac{7}{2} m r^{2}}{(3 m) g(r)}} \\
& =2 \pi \sqrt{\frac{7 r}{6 g}}
\end{align*}
$$

8(b) The disc is held with the particle vertically above l, and is then released from rest.
(ii) Find the maximum angular velocity in the subsequent motion.

$$
\begin{array}{rll}
& M g \bar{h}+M g \bar{h}+\frac{1}{2} I \omega^{2} & = \\
\text { Disc Point Mass System } & & M g \bar{h}+M g \bar{h}+\frac{1}{2} I \omega^{2} \\
\Rightarrow \quad & \text { Disc Point Mass System } \tag{5m}\\
\Rightarrow \quad m g(3 r)+2 m g(3 r)+0 & = & m g(r)+2 m g(r)+\frac{1}{2}\left(\frac{7}{2} m r^{2}\right) \omega^{2} \\
\Rightarrow \quad 3 m g r+6 m g r & = & m g r+2 m g r+\frac{7}{4} m r^{2} \omega^{2}
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad 9 m g r \quad=\quad 3 \mathrm{mgr}+\frac{7}{4} m r^{2} \omega^{2} \tag{5~m}
\end{equation*}
$$

$$
\Rightarrow \quad \frac{7}{4} m r^{2} \omega^{2} \quad=\quad 9 m g r-3 \mathrm{mgr}
$$

$$
\begin{array}{lll}
\Rightarrow \quad \frac{7}{4} r \omega^{2} & =6 m g \\
& & =6 g
\end{array}
$$

$$
\Rightarrow \quad \omega^{2} \quad=\frac{(4)(6 g)}{7 r}
$$

$$
\Rightarrow \quad=\frac{24 g}{7 r}
$$

$$
\begin{equation*}
\Rightarrow \quad \omega \quad=\sqrt{\frac{24 g}{7 r}} \tag{5~m}
\end{equation*}
$$

9. (a) A piece of metal weighs 15 N in air and 12 N in water. The metal weighs 13 N in a light oil.

Find
(i) the relative density of the metal

$$
\begin{array}{rlrl}
B_{w} & & =15-12 \\
& =3 \tag{5~m}\\
B_{w} & & \frac{W}{s_{0}} \\
\Rightarrow 3 & & \frac{15}{s_{0}} \\
\Rightarrow \quad s_{0} & & \frac{15}{3} \\
& & =5
\end{array}
$$

(ii) the relative density of the oil.

$$
\begin{array}{rlrl}
B_{l} & & =15-13 \\
& =2 \\
& B_{l} & & \frac{s_{l} W_{0}}{s_{0}} \\
\Rightarrow 2 & & \frac{s_{l}(15)}{5} \\
\Rightarrow \quad s_{l} & & \frac{(2)(5)}{15} \\
& & =\frac{2}{3} \tag{5~m}
\end{array}
$$

9(b) A solid hemisphere of radius r is held immerged in a tank of liquid of density ρ.
Its plane face is in a horizontal position at a distance r below the surface of the liquid.

Find the magnitude and direction of

(i) the downward thrust exerted on the plane face by the liquid

$$
\left.\begin{array}{rll}
\text { Pressure } & = & h \rho g \\
& = & r \rho g
\end{array}\right] \begin{array}{ll}
\\
\Rightarrow \quad \text { Thrust } & = \\
& = \\
& \tag{5~m}\\
& \\
& (r \rho g)\left(\pi r^{2}\right) \\
& \\
&
\end{array}
$$

(ii) the buoyancy force

$$
\begin{align*}
\text { Buoyancy } & =V \rho g \\
& =\left(\frac{2}{3} \pi r^{3}\right) \rho g \\
& =\frac{2}{3} \pi \rho r^{3} g \tag{5~m}
\end{align*}
$$

(iii) the total thrust upwards on the curved surface of the hemisphere.

$$
\begin{align*}
B & & =T_{\text {upwards }}-T_{\text {downwards }} \tag{5~m}\\
\Rightarrow \quad \frac{2}{3} \pi \rho r^{3} g & & T_{\text {upwards }}-\pi \rho r^{3} g \tag{5~m}\\
\Rightarrow \quad T_{\text {upwards }} & & =\frac{2}{3} \pi \rho r^{3} g+\pi \rho r^{3} g \\
& & =\frac{5}{3} \pi \rho r^{3} g \tag{5~m}
\end{align*}
$$

10. (a) Solve the differential equation

$$
\left(1+x^{3}\right) \frac{d y}{d x}=x^{2} y
$$

given that $y=2$ when $x=1$.

$$
\begin{array}{lll}
& & \left(1+x^{3}\right) \frac{d y}{d x} \tag{20}\\
\Rightarrow \quad & =x^{2} y \\
\Rightarrow \quad \frac{d y}{y} & = & \frac{x^{2} d x}{1+x^{3}} \\
\Rightarrow \quad \int \frac{d y}{y} & =\int \frac{x^{2} d x}{1+x^{3}} \\
\Rightarrow \quad \ln y & & =\frac{1}{3} \ln \left(1+x^{3}\right)+c
\end{array}
$$

$$
\text { @ } y=2, x=1
$$

$$
\Rightarrow \quad \ln 2=\frac{1}{3} \ln (1+1)+c
$$

$$
\Rightarrow \quad c \quad=\quad \ln 2-\frac{1}{3} \ln 2
$$

$$
\begin{equation*}
=\quad \frac{2}{3} \ln 2 \tag{5~m}
\end{equation*}
$$

$$
\Rightarrow \quad \ln y \quad=\quad \frac{1}{3} \ln \left(1+x^{3}\right)+\frac{2}{3} \ln 2
$$

$$
=\quad \ln \left(1+x^{3}\right)^{\frac{1}{3}}(2)^{\frac{2}{3}}
$$

$$
=\quad \ln \left(1+x^{3}\right)^{\frac{1}{3}}(4)^{\frac{1}{3}}
$$

$$
=\quad \ln \left(4+4 x^{3}\right)^{\frac{1}{3}}
$$

$$
\begin{equation*}
\Rightarrow \quad y=\left(4+4 x^{3}\right)^{\frac{1}{3}} / \sqrt[3]{4+4 x^{3}} \tag{5~m}
\end{equation*}
$$

10(b) A force of magnitude $\frac{2 m}{x^{5}}$ thrusts a particle, of mass m, directed away from a fixed point o, where x is the distance of the particle from O.
The particle starts from rest at $x=d$.
(i) Show that the velocity of the particle is $\frac{2 \sqrt{2}}{3 d^{2}}$ when $x=\sqrt{3} d$.

$$
\begin{align*}
& F \quad=\frac{2 m}{x^{3}} \tag{25}\\
& \Rightarrow \quad m a \quad=\frac{2 m}{x^{3}} \\
& \Rightarrow \quad a \quad=\frac{2}{x^{3}} \\
& =2 x^{-5} \tag{5~m}\\
& \Rightarrow v \frac{d v}{d x} \quad=2 x^{-5} \tag{5~m}\\
& \Rightarrow \int_{0}^{v} v d v=\int_{d}^{x} 2 x^{-5} d x \\
& \left.\Rightarrow \quad \frac{v^{2}}{2}\right|_{0} ^{v} \quad=\left.\quad \frac{2 x^{-4}}{-4}\right|_{d} ^{x} \tag{5~m}\\
& \Rightarrow \quad \frac{v^{2}}{2}-\frac{(0)^{2}}{2} \quad=\quad \frac{-1}{2 x^{4}}+\frac{1}{2 d^{4}} \\
& \Rightarrow \quad v^{2} \quad=\quad \frac{1}{d^{4}}-\frac{1}{x^{4}} \tag{5~m}\\
& \text { when } x=\quad \sqrt{3} d \\
& v^{2}=\frac{1}{d^{4}}-\frac{1}{(\sqrt{3} d)^{4}} \\
& =\quad \frac{1}{d^{4}}-\frac{1}{9 d^{4}} \\
& =\frac{8}{9 d^{4}} \\
& \Rightarrow \quad v \quad=\sqrt{\frac{8}{9 d^{4}}} \\
& =\frac{2 \sqrt{2}}{3 d^{2}} \tag{5~m}
\end{align*}
$$

(ii) Determine the limiting speed, v_{1}, of the particle.
(that is, $v \rightarrow v_{1}$ as $t \rightarrow \infty$).

$$
v^{2} \quad=\quad \frac{1}{d^{4}}-\frac{1}{x^{4}}
$$

as $t \rightarrow \infty, x \rightarrow \infty$ (as the particle always accelerates to the right)
as $x \rightarrow \infty, \frac{1}{x^{4}} \rightarrow 0$

$$
\begin{align*}
\Rightarrow \quad v^{2} & =\frac{1}{d^{4}}-0 \\
\Rightarrow \quad v & =\sqrt{\frac{1}{d^{4}}} \\
& =\frac{1}{d^{2}} \tag{5~m}
\end{align*}
$$

