AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2002

APPLIED MATHEMATICS - HIGHER LEVEL

FRIDAY, 21 JUNE - AFTERNOON, 2.00 to 4.30

Six questions to be answered. All questions carry equal marks.
Mathematics Tables may be obtained from the Superintendent.
Take the value of g to be $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Marks may be lost if necessary work is not clearly shown or you do not indicate where a calculator has been used.

1. (a) A stone is thrown vertically upwards under gravity with a speed of $u \mathrm{~m} / \mathrm{s}$ from a point 30 metres above the horizontal ground. The stone hits the ground 5 seconds later.
(i) Find the value of u.
(ii) Find the speed with which the stone hits the ground.
(b) A particle, with initial speed u, moves in a straight line with constant acceleration.
During the time interval from 0 to t, the particle travels a distance p.
During the time interval from t to $2 t$, the particle travels a distance q.
During the time interval from $2 t$ to $3 t$, the particle travels a distance r.
(i) Show that $2 q=p+r$.
(ii) Show that the particle travels a further distance $2 r-q$ in the time interval from $3 t$ to $4 t$.
2. (a) Two boats, B and C, are each moving with constant velocity.

At a certain instant, boat B is 10 km due west of boat C .
The speed and direction of boat B relative to boat C is $2.5 \mathrm{~m} / \mathrm{s}$ in the direction 60° south of east.
(i) Calculate the shortest distance between the boats, to the nearest metre.
(ii) Calculate the length of time, to the nearest second, for which the boats are less than or equal to 9 km apart.
(b) The velocity of ship P relative to a steady wind is $20 \mathrm{~km} / \mathrm{hr}$ in the direction 80° north of east.
The velocity of ship Q relative to the same steady wind is $10 \mathrm{~km} / \mathrm{hr}$ in the direction 20° south of west.

Calculate the magnitude and direction of the velocity of ship P relative to ship Q.
Give your answers to the nearest km and the nearest degree, respectively.
3. (a) A particle is projected from a point on the horizontal ground with a speed of $39.2 \mathrm{~m} / \mathrm{s}$ inclined at an angle α to the horizontal ground. The particle is at a height of 14.7 m above the horizontal ground at times t_{1} and t_{2} seconds, respectively.
(i) Show that $t_{2}-t_{1}=\sqrt{64 \sin ^{2} \alpha-12}$.
(ii) Find the value of α for which $t_{2}-t_{1}=\sqrt{20}$.
(b) A particle is projected with velocity $u \mathrm{~m} / \mathrm{s}$ at an angle θ to the horizontal, up a plane inclined at an angle β to the horizontal. (The plane of projection is vertical and contains the line of greatest slope). The particle strikes the plane at right angles.
(i) Show that $2 \tan \beta \tan (\theta-\beta)=1$.
(ii) Hence, or otherwise, show that if $\theta=2 \beta$, the range of the particle up the inclined plane is $\frac{u^{2}}{g \sqrt{3}}$.
4. (a) A particle is describing simple harmonic motion with period $\frac{\pi}{4}$ seconds about a point o. When the particle is 6 cm from the point o, its speed is $8 \sqrt{13} \mathrm{~cm} / \mathrm{s}$.

Find the amplitude of the motion.
(b) A smooth light pulley is connected by a light inextensible string passing over a smooth light fixed pulley to a scale pan of weight 1 N . A particle of weight 2 N is placed symmetrically on the centre of the scale pan.
Two particles of weight 3 N and 9 N are connected by a light inextensible string passing over the smooth light pulley. The system is released from rest.
The acceleration of the scale pan is $\frac{g}{2} \mathrm{~m} / \mathrm{s}^{2}$ vertically upwards.
(i) Find the acceleration, in terms of g, of the particle of weight 9 N .

(ii) Find the normal reaction (force) between the particle of weight 2 N and the scale pan.
5. (a) Three identical smooth spheres, A, B and C, lie at rest on a smooth horizontal table with their centres in a straight line.

Sphere A is projected towards B with speed u. Sphere A collides directly with B and then B collides directly with C . Sphere C moves, after the collision, with a speed of $\frac{5 u}{8}$.
The coefficient of restitution for each of the two collisions is e.
Find e, correct to two places of decimals.
(b) A smooth sphere P collides with an identical smooth sphere Q which is at rest. The velocity of P before impact makes an angle α with the line of centres at impact, where $0^{\circ} \leq \alpha<90^{\circ}$.
The velocity of P is deflected through an angle ϑ by the collision, so that its velocity after impact makes an angle $\vartheta+\alpha$ with the line of centres at impact. The coefficient of restitution between the spheres is $\frac{1}{4}$.
Show that $\tan \vartheta=\frac{5 \tan \alpha}{3+8 \tan ^{2} \alpha}$.
6. A smooth uniform vertical hoop of radius r and mass $M \mathrm{~kg}$ stands in a vertical plane on a horizontal surface. The hoop threads two small rings, each of mass $m \mathrm{~kg}$. The rings are released from rest at the top of the hoop.
(i) When the two rings have each fallen
 through an angle of ϑ° on opposite sides of the hoop, show that the normal force of reaction exerted by the hoop on each ring is

$$
m g(3 \cos \vartheta-2) \mathrm{N}
$$

where this force is taken to act in the outward direction from the centre of the hoop.
(ii) Show that the hoop will rise from the table if $m>\frac{3 M}{2}$.
7. A uniform rod, [ab], of weight $4 W$ and length $2 l$, is free to rotate smoothly about the fixed point a. A fixed wire, [ad], extends horizontally from a. The end b of the rod is attached by a
 light inelastic string, $[b c$], of length $2 l$, to a ring, of weight W and negligible diameter, which can slide on the wire. The coefficient of friction between the ring and the wire is μ. The string makes an angle α with the horizontal when the system is in limiting equilibrium (that is, just on the point of slipping).
(i) Show that $\tan \alpha=\frac{1}{2 \mu}$.
(ii) Show that the tension in the string is $W \sqrt{1+4 \mu^{2}}$.
8. (a) Prove that the moment of inertia of a uniform rod of mass m and length $2 l$ about an axis through its centre perpendicular to the rod is $\frac{1}{3} m l^{2}$.
(b) The diagram shows a two-dimensional wheel (shaded area) and four spokes arranged inside the wheel as shown. The inner and outer radii of the wheel are $6 a$ and $8 a$, respectively.
Each spoke is of mass m and length $6 a$. The total mass of the wheel and four spokes is 18 m .
(i) Show that the mass per unit area
 of the wheel (shaded area) is $\frac{m}{2 \pi a^{2}}$.
(ii) Show that the total moment of inertia of the wheel and four spokes about an axis through the centre and perpendicular to the plane of the wheel is $748 m a^{2}$.
(iii) If $m=100$ grammes and $a=10 \mathrm{~cm}$, how much work is done in bringing this wheel and spokes to rest from 6000 revolutions per minute?
9. (a) When placed in liquid A , a uniform solid cylinder floats upright with $\frac{2}{5}$ of its axis immersed in the liquid.

When placed in liquid B, the uniform solid cylinder floats upright with $\frac{4}{7}$ of its axis immersed in the liquid.

What fraction of the cylinder's axis is immersed when the cylinder floats upright in a uniform mixture of equal volumes of liquid A and liquid B ?
(b) A hollow spherical shell of external radius 0.5 m and uniform thickness 0.1 m floats in a liquid of relative density 0.9 .
The relative density of the material of the shell is $\frac{36}{61}$.
What fraction of the volume enclosed by the external surface of the shell is immersed in the liquid?
10. (a) Solve the differential equation

$$
\frac{d y}{d x}=e^{x-y}
$$

given that $y=\ln 4$ when $x=0$.
(b) A particle starts from rest and moves in a horizontal line. Its speed v at time t is given by the equation

$$
\frac{d v}{d t}=100-v
$$

(i) Find the time taken for the speed of the particle to increase from $25 \mathrm{~m} / \mathrm{s}$ to $75 \mathrm{~m} / \mathrm{s}$.
(ii) How far does the particle travel in going from rest to a speed of $75 \mathrm{~m} / \mathrm{s}$?
(iii) Determine the limiting speed, v_{1}, of the particle.
(that is, $v \rightarrow v_{1}$ as $t \rightarrow \infty$).

